

Answers

1.	a) $y = 2x - 3$	(b) $y = 3x + 5$	(c) $y = -3x + 4$
	d) $y = -x - 6$	(e) $y = 4x - 9$	(f) $y = -4x - 14$
2.	a) x < 4	(b) $y \ge 3$	(c) $w > -4$
	$\mathbf{d}) \mathbf{k} \leq -2$	(e) $x < 3$	(f) $x \ge -3$
	g) x < 8	$(\mathbf{h}) \mathbf{m} \leq 4$	
3.	a) $2f + 3s = -13$	(b) $3a + 4c = 75$	(c) $2a + 3c = 88$
4.	a) $x = 2, y = 3$	(b) $m = 1$, $n = -1$	(c) $a = 3, b = 4$
5.	£9.70	6. £28	
7.	a) $x = \frac{y-p}{2}$	(b) $x = \frac{p-u}{v}$	(c) $x = \frac{n}{2m}$ (d) $x = \frac{8y+16}{7}$
	e) $x = \frac{5a-50}{6}$	(f) $x = \frac{m-3}{6}$	(g) $x = \frac{h+12}{20}$ (h) $x = \frac{2d+6}{5}$
	i) $x = \frac{c-5}{4a}$		

8. a) k = 5 (b) k = 3 (c) k = 2d) k = -2 (e) k = 6 (f) $k = -\frac{1}{2}$ **9.** a) $y = (x-4)^2 + 2$ (b) $y = (x+3)^2 - 2$ (c) $y = (x-3)^2 - 9$

10. a)
$$y = (x - 3)^2 + 2$$
 (b) $y = (x + 2)^2 - 16$

- **11.** a) x = 4 (4, -3) Min(e) x = -2 (-2, -6) Minb) x = -2 (-2, 5) Min(f) x = -3 (-3, 1) Minc) x = 2 (2, 3) Min(g) x = -5 (-5, -8) Mind) x = 1 (1, 3) Min(h) x = 6 (6, 3) Min
- 12 a) Sketch of a Parabola with Min TP @ (5, -1) Roots at x = 4 & 6 y-intercept @ (0, 2)
 b) Sketch of a Parabola with Min TP @ (1, -25) Roots at x = -4 & 6 y-intercept @ (0, -24)
 c) Sketch of a Parabola with Min TP @ (-2, -36) Roots at x = -8 & 4 y-intercept @ (0, -2)
 d) Sketch of a Parabola with Min TP @ (-4, -4) Roots at x = -6 & -2 y-intercept @ (0, 12)
 e) Sketch of a Parabola with Min TP @ (2, -36) Roots at x = -4 & 8 y-intercept @ (0, -32)
 f) Sketch of a Parabola with Min TP @ (1, -16) Roots at x = -3 & 5 y-intercept @ (0, -15)
- **13.** a) x = 5, x = 7(b) x = 3, x = -2(c) x = -1, x = 5d) x = -4, x = -6(e) x = 2, x = -6(f) x = -6, x = -3g) x = -2, x = 7(h) x = 6, x = 1
- **14.** a) x = -0.46, -6.54 (b) x = 2.79, -1.79 (c) -x = 10.48, -0.48 d) x = -0.88, -5.12
- 15. a) Hits ground when h = 0 so t = -0.19, t = 2.69 time can't be negative so t = 2.69 seconds
 b) Hits ground when h = 0 so t = -0.7, t = 10.7 time can't be negative so t = 10.7 seconds
 c) Hits ground when h = 0 so t = -0.37, t = 6.37 time can't be negative so t = 6.37 seconds

- **16. a)** $b^2 4ac = 0$, so real and equal roots
 - c) $b^2 4ac = 0$, so real and equal roots
 - e) $b^2 4ac > 0$, so real and distinct roots
 - **g**) $b^2 4ac > 0$, so real and distinct roots
 - i) $b^2 4ac = 0$, so real and equal roots

- (b) $b^2 4ac < 0$, so no real roots
- (d) $b^2 4ac > 0$, so real and distinct roots
- (f) $b^2 4ac < 0$, so no real roots
- (**h**) $b^2 4ac > 0$, so real and distinct roots
- (j) $b^2 4ac < 0$, so no real roots

17. $18.6^2 + 24.8^2 \neq 31.2^2$, therefore the triangle is not right angled.

- **18.** $15.6^2 + 11.7^2 = 19.5^2$, therefore the triangle is right angled and he has been successful.
- **19.** $1.6^2 + 4.3^2 \neq 4.5^2$, therefore the triangle is not right angled.
- 20. 27cm
- **21.** 3.45m, since 3.45 < 5 the tunnel does not mee the safety regulations.
- 22. 138°
 23. 132°

 24. 34°
 25. 22°

 26. 40°
 27. 15cm²
- **28.** 112.5cm² **29.** 625ml
- **30.** 64000cm³ **31.** 375cm³
- **32.** a) 120° (b) 135° (c) 144°
- **32.** a) Sketch of Sine curve with amplitude 2 and period 360°
 - **b**) Sketch of Sine curve with amplitude 4 and period 360°
 - c) Sketch of Cosine curve with amplitude 2 and period 360°
 - d) Sketch of Cosine curve with amplitude 3 and period 360°
 - e) Sketch of Sine curve with amplitude 6 and period 360°
 - f) Sketch of Cosine curve with amplitude 10 and period 360°

33.	a)	Period = 120° Amplitude = 1	(b) Period = 120	$^{\circ}$ Amplitude = 1		
	c)	Period = 90° Amplitude = 1	(d) Period = 60°	Amplitude = 1		
	e)	Period = 120° Amplitude = 2	$(f) \text{Period} = 180^\circ$	• Amplitude $= 4$		
	g)	Period = 36° Amplitude = 6	(h) Period = 90°	Amplitude $= 3$		
	i)	Period = 60° Amplitude = 7	(j) Period = 40°	Amplitude = 3		
34.	a)	a = 5, $b = 4$	(b) $a = 1, b = 3$			
35.	a)	5.74°, 174.26°	(b) 113.58°, 246.42°	(c) 189.59°, 350.41°		
	d)	74.05° , 254.05°	(e) 78.46° , 281.54°	(f) 206.39°, 333.61°		
	g)	48.19°, 311.81°				
36. 37	x-coordinate of point B is 120° x-coordinate of point C is 240°			C is 240°		
37. 131.41°						

38. x-coordinate of point A is 44.43° x-coordinate of point B is 135.57°