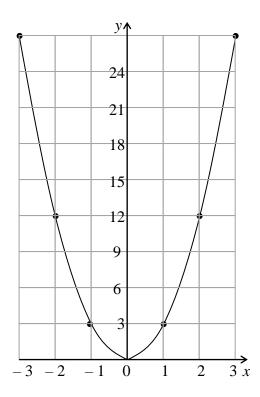
Practice Unit Assessment (3) for National 5 Relationships

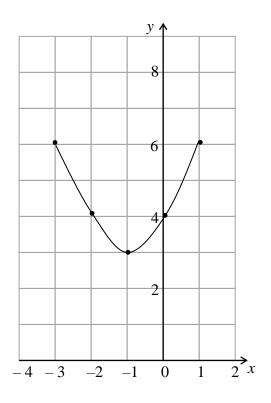
- A straight line with gradient ¹/₂ passes through the point (1, 5).
 Determine the equation of this straight line.
- **2.** Solve the inequation 5k-3 < 2k+9.
- 3. A group of friends met in a coffee bar. They paid £9.40 for 4 cappuccinos and 2 lattes.Write an equation to represent this information.
- **4.** Solve the following system of equations algebraically:

$$5c - 2d = 36$$
$$c + d = 17$$


5. Here is a formula

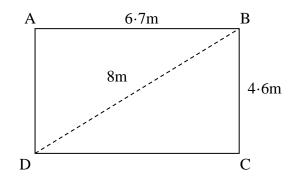
$$k = 7 + \frac{5m}{4}$$

Change the subject of the formula to *m*.


6. The diagram shows the parabola with equation $y = kx^2$

What is the value of *k*?

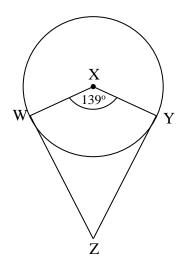
7. The equation of the quadratic function whose graph is shown below is of the form $y = (x + a)^2 + b$, where *a* and *b* are integers.


Write down the values of *a* and *b*.

8. Sketch the graph y = (x - 4)(x + 2) on plain paper.

Mark clearly where the graph crosses the axes and state the coordinates of the turning point.

- 9. A parabola has equation $y = 5 (x + 3)^2$.
 - (a) Write down the equation of its axis of symmetry.
 - (b) Write down the coordinates of the turning point on the parabola and state whether it is a maximum or minimum.
- **10.** Solve the equation (x 7)(x + 1) = 0
- 11. Solve the equation $x^2 + 5x 7 = 0$ using the quadratic formula.
- 12. Determine the nature of the roots of the equation $9x^2 + 6x + 1 = 0$ using the discriminant.

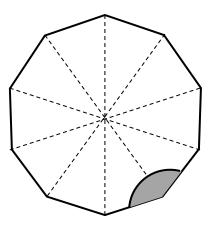


Is angle $DAB = 90^{\circ}$ in this shape?

14. The diagram shows kite WXYZ and a circle with centre X.

WZ is the tangent to the circle at W and YZ is the tangent to the circle at Y.

Given that angle WXY is 139°, calculate angle WZY.


15. A tube of toothpaste is 21 cm long and has a volume of 50 cm^3

A similar miniature version is 9cm long.

Calculate how much toothpaste the miniature version would hold.

16. Here is a regular, 10 – sided polygon.

Calculate the size of the shaded angle.

- **17.** Sketch the graph of $y = -3\sin x^{\circ}$ for $0^{\circ} \le x \le 360^{\circ}$.
- **18.** Write down the period of the graph of the equation $y = \sin \frac{1}{2} x^{\circ}$.
- **19.** Solve the equation $5\tan x^{\circ} 7 = 0$, $0^{\circ} \le x \le 360^{\circ}$.

End of Question Paper

Points of reasoning are marked # in the table.

Question	Mair	n points of expected responses	5	
1	•1	correct substitution	•1	$y-5 = \frac{1}{2} (x-1)$ (or equivalent)
2	• ¹ • ² • ³	simplify for <i>k</i> simplify numbers solve	•1 •2 •3	3k 12 k < 4
3	#2.1	uses correct strategy and sets up equation	#2.1	$4c + 2l = 9 \cdot 4$
4	•1	multiply by appropriate Factor	•1	5c - 2d = 36 5c + 2d = 34 or equivalent
	• ² • ³	solve for <i>c</i> solve for <i>d</i>	• ² • ³	c = 10 $d = 7$
5	• ¹ • ²	subtract 7 multiply by 4	• ¹ • ²	$k-7$ $(k-7) \times 4$ (or equivalent)
	•3	divide by 5	•3	$\frac{4(k-7)}{5}$ (or equivalent)
6	•1	correct value of <i>k</i>	•1	<i>k</i> = 3
7	• ¹ • ²	find value of ' <i>a</i> ' find value of ' <i>b</i> '	• ¹ • ²	a = 1 $b = 3$
8	•1	identify and annotate roots and <i>y</i> -intercept		-2, 4 and (0, -8)
	• ²	identify and annotate turning point	• ²	(1, -9)
9 (a)	• 1	draw correct shape of graph axis of symmetry	• 5	correctly annotated graph $x = -3$
(b)	•2		•2	
	•3	turning point nature	•3	(-3, 5) maximum turning point
10	•1	solve equation	•1	x = -1, x = 7
11	•1	correct substitution	•1	$\frac{-5\pm\sqrt{5^2-4\times1\times-7}}{2}$

[
12	 evaluation discriminant solve for 1 root complete solution correct substitution 	• ² 53 • ³ $x = 1 \cdot 1$ • ⁴ $x = -6 \cdot 1$ (rounding not required) • ¹ $(6)^2 - 4 \times 9 \times 1$
12	 correct substitution evaluate discriminant #2.2 interpret result 	• (6) $-4 \times 9 \times 1$ • ² #2.2 equal roots since $b^2 - 4ac = 0$
13	• ¹ calculates and adds squares of two short sides	• $4 \cdot 6^2 + 6 \cdot 7^2 = 66 \cdot 05$
	 •² squares longest side #2.2 interprets result 	• ² $8^2 = 64$ #2.2 so $4 \cdot 6^2 + 6 \cdot 7^2 \neq 8^2$ and hence triangle is not right- angled using converse of Pythagoras. Angle DAB is not a right angle.
14	 radius and tangent subtract correct answer 	• ¹ either angle ZWX or angle ZYX = 90° • ² $360 - (90 + 90 + 139)$ • ³ 41°
15	 use volume scale factor correct answer 	• ¹ $(9/21)^3 \times 50$ • ² 4 cm ³
16	 #2.1 use a valid strategy •¹ correct answer 	#2.1 eg centre angles $360/10 = 36^{\circ}$ each • ¹ 144°
17	 correct amplitude and period correctly annotated graph complete with roots and amplitude. 	 -3/3 and 360° Correct graph
18	• ¹ correct period	• ¹ 720°
19	• ¹ solve for $\tan x^{\circ}$ • ² solve for x • ³ complete solution	• ¹ $\tan x^\circ = 1.4$ • ² 54.5° • ³ 234.5°