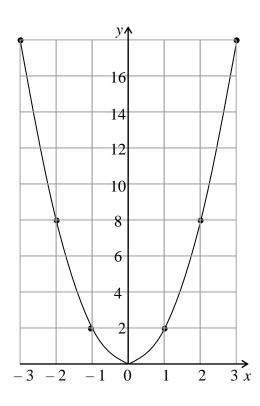
Practice Unit Assessment (2) for National 5 Relationships

- A straight line with gradient 4 passes through the point (2, -4).
 Determine the equation of this straight line.
- **2.** Solve the inequation 7m + 5 < 2m + 30.
- **3.** The Clelland family visit a new attraction in Inverness. They paid £29.40 for 2 adult tickets and 4 child tickets.

Write an equation to represent this information.

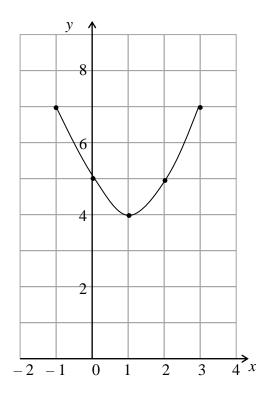
4. Solve the following system of equations algebraically:

$$7x + 2y = 32$$
$$2x - y = 6$$


5. Here is a formula

$$A = \frac{4B}{5} - 2$$

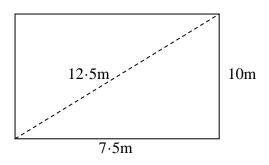
Change the subject of the formula to *B*.


6. The diagram shows the parabola with equation $y = kx^2$.

What is the value of *k*?

7. The equation of the quadratic function whose graph is shown below is of the form $y = (x + a)^2 + b$, where *a* and *b* are integers.

Write down the values of *a* and *b*.

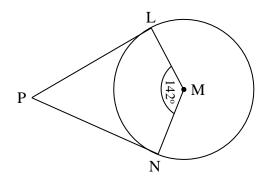


8. Sketch the graph y = (x - 5)(x - 7) on plain paper.

Mark clearly where the graph crosses the axes and state the coordinates of the turning point.

- 9. A parabola has equation $y = (x + 4)^2 3$.
 - (a) Write down the equation of its axis of symmetry.
 - (b) Write down the coordinates of the turning point on the parabola and state whether it is a maximum or minimum.
- **10.** Solve the equation (x 10)(x + 5) = 0
- 11. Solve the equation $x^2 3x 2 = 0$ using the quadratic formula.
- 12. Determine the nature of the roots of the equation $4x^2 + 3x + 5 = 0$ using the discriminant.

13. A shape has dimensions as shown in the diagram.

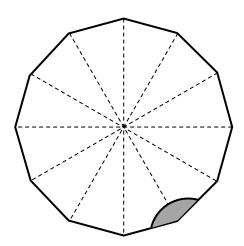


Kalen thinks it is a rectangle. Is he correct?

14. The diagram shows kite PNML and a circle with centre M.

PL is the tangent to the circle at L and PN is the tangent to the circle at N.

Given that angle LMN is 142°, calculate angle LPN.


15. A cuboid has length 30 cm and a volume of 1500 cm^3

A similar miniature version is 10 cm long.

.

Calculate the volume of the miniature cuboid.

16. Here is a regular, 12 – sided polygon.

Calculate the size of the shaded angle.

- **17.** Sketch the graph of $y = 7\cos x^{\circ}$ for $0^{\circ} \le x \le 360^{\circ}$.
- **18.** Write down the period of the graph of the equation $y = \sin 5x^{\circ}$.
- **19.** Solve the equation $7\cos x^\circ 2 = 0$, $0^\circ \le x \le 360^\circ$.

End of Question Paper

Points of reasoning are marked # in the table.

Question	Main points of expected responses			
1	•1	correct substitution	•1	y + 4 = 4(x - 2) (or equivalent)
2	•1	simplify for <i>m</i>	•1	5 <i>m</i>
	•2	simplify numbers	•2	25
	•3	solve	•3	m < 5
3	#2.1	uses correct strategy and sets up equation	#2.1	$2a + 4c = 29 \cdot 4$
4	\bullet^1	multiply by appropriate	•1	7x + 2y = 32
		factor		4x - 2y = 12
	2		2	or equivalent
	\bullet^2	solve for x	\bullet^2	x = 4
	•3	solve for <i>y</i>	•3	<i>y</i> = 2
5	•1	add 2	•1	A + 2
	• ²	multiply by 5	• ²	$(A + 2) \times 5$
				(or equivalent)
	•3	divide by 4	•3	5(A+2)
				4
				(or equivalent)
6	•1	correct value of <i>k</i>	•1	<i>k</i> = 2
7	•1	find value of ' <i>a</i> '	•1	a = -1
	•2	find value of 'b'	•2	<i>b</i> = 4
8	•1	identify and annotate roots and y-intercept	•1	5, 7 and (0, 35)
	•2	identify and annotate turning point	•2	(6, -1)
	•3	draw correct shape of graph	•3	correctly annotated graph
9 (a)	•1	axis of symmetry	•1	<i>x</i> = -4
(b)	•2	turning point	• ²	(-4, -3)
	•3	nature	•3	minimum turning point
10	•1	solve equation	•1	x = -5, x = 10
11	•1	correct substitution	•1	$\frac{3\pm\sqrt{3^2-4\times1\times-2}}{2}$

12	 evaluation discriminant solve for 1 root complete solution correct substitution evaluate discriminant #2.2 interpret result 	• ² 17 • ³ $x = 3 \cdot 6$ • ⁴ $x = -0 \cdot 6$ (rounding not required) • ¹ $(3)^2 - 4 \times 4 \times 5$ • ² -71 #2.2 roots are not real since $b^2 - 4ac < 0$
13	• ¹ calculates and adds squares of two short sides	•1 $7 \cdot 5^2 + 10^2 = 156 \cdot 25$
	 •² squares longest side #2.2 interprets result 	• ² $12 \cdot 5^2 = 156 \cdot 25$ #2.2 so $7 \cdot 5^2 + 10^2 = 12 \cdot 5^2$ and hence triangle is right- angled using converse of Pythagoras. The shape is a rectangle
14	 radius and tangent subtract correct answer 	• ¹ either angle PLM or angle MNP = 90° • ² $360 - (90 + 90 + 142)$ • ³ 38°
15	 use volume scale factor correct answer 	• ¹ $(10/30)^3 \times 15000$ • ² 55.6 cm^3
16	 #2.1 use a valid strategy •¹ correct answer 	#2.1 eg centre angles $360/12 = 30^{\circ}$ each • ¹ 150°
17	 correct amplitude and period correctly annotated graph complete with roots and amplitude. 	 ●¹ 7/-7 and 360° ●² Correct graph
18	• ¹ correct period	• ¹ 72°
19	• ¹ solve for $\cos x^{\circ}$ • ² solve for x • ³ complete solution	• ¹ $\cos x^{\circ} = 2/7$ • ² $73 \cdot 4^{\circ}$ • ³ $286 \cdot 6^{\circ}$