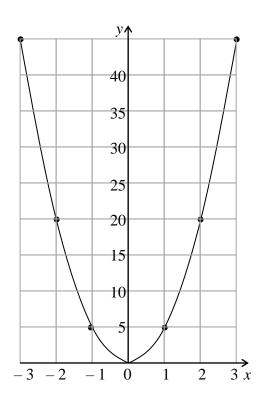
Practice Unit Assessment (1) for National 5 Relationships

- 1. A straight line with gradient -3 passes through the point (-2, 5). Determine the equation of this straight line.
- **2.** Solve the inequation 4p 12 .
- **3.** The Stuart family visit a new attraction in Edinburgh. They paid £32.25 for 3 adult tickets and 2 child tickets.

Write an equation to represent this information.

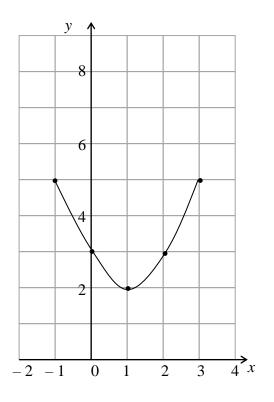
4. Solve the following system of equations algebraically:

$$3a + 5b = 39$$
$$a - b = -3$$


5. Here is a formula

$$S = \frac{2x}{3} + 6$$

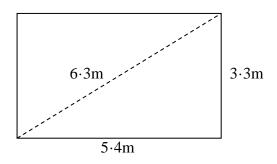
Change the subject of the formula to *x*.


6. The diagram shows the parabola with equation $y = kx^2$.

What is the value of *k*?

7. The equation of the quadratic function whose graph is shown below is of the form $y = (x + a)^2 + b$, where *a* and *b* are integers.

Write down the values of *a* and *b*.

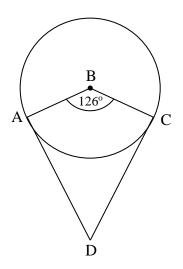


8. Sketch the graph y = (x - 1)(x + 3) on plain paper.

Mark clearly where the graph crosses the axes and state the coordinates of the turning point.

- 9. A parabola has equation $y = (x 3)^2 + 4$.
 - (a) Write down the equation of its axis of symmetry.
 - (b) Write down the coordinates of the turning point on the parabola and state whether it is a maximum or minimum.
- **10.** Solve the equation (x 3)(x + 7) = 0
- 11. Solve the equation $x^2 + 2x 7 = 0$ using the quadratic formula.
- 12. Determine the nature of the roots of the equation $3x^2 + 2x 1 = 0$ using the discriminant.

13. To check that a room has perfect right angles, a builder measures two sides of the room and its diagonal. The measurements are shown in this diagram.

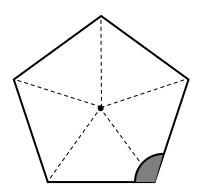


Are the corners of the room right – angled?

14. The diagram shows kite ABCD and a circle with centre B.

AD is the tangent to the circle at A and CD is the tangent to the circle at C.

Given that angle ABC is 126°, calculate angle ADC.



15. A water container is in the shape of a cylinder which is 150 cm long. The volume of water in the container is 12 000 cm³.

A similar miniature version is 15cm long.

Calculate how much water the miniature version would hold.

16. Here is a regular, 5 – sided polygon.

Calculate the size of the shaded angle.

- **17.** Sketch the graph of $y = 4\sin x^{\circ}$ for $0^{\circ} \le x \le 360^{\circ}$.
- **18.** Write down the period of the graph of the equation $y = \cos 3x^{\circ}$.
- **19.** Solve the equation $4\sin x^\circ 1 = 0, 0^\circ \le x \le 360^\circ$.

End of Question Paper

Points of reasoning are marked # in the table.

Question	Mair	n points of expected responses	5	
1	•1	correct substitution	•1	y-5 = -3(x - (-2)) (or equivalent)
2	•1	simplify for <i>p</i>	•1	3 <i>p</i>
	\bullet^2	simplify numbers	•2	18
	•3	solve	•3	<i>p</i> < 6
3	#2.1	uses correct strategy and sets up equation	#2.1	$3a + 2c = 32 \cdot 25$
4	•1	multiply by appropriate	•1	3a + 5b = 39
		Factor		5a - 5b = -15
				or equivalent
	• ²	solve for <i>a</i>	•2	a = 3
	•3	solve for <i>b</i>	•3	<i>b</i> = 6
5	•1	subtract 6	•1	<i>S</i> – 6
	• ²	multiply by 3	• ²	$(S-6) \times 3$
				(or equivalent)
	•3	divide by 2	•3	3(S-6)
			•	2
				(or equivalent)
6	•1	correct value of <i>k</i>	•1	<i>k</i> = 5
7	•1	find value of 'a'	•1	a = -1
	• ²	find value of 'b'	• ²	<i>b</i> = 2
8	•1	identify and annotate roots and y-intercept	•1	-3, 1 and (0, -3)
	•2	identify and annotate turning point	•2	(-1, -4)
	•3	draw correct shape of graph	•3	correctly annotated graph
9 (a)	•1	axis of symmetry	•1	<i>x</i> = 3
(b)	•2	turning point	•2	(3, 4)
	•3	nature	•3	minimum turning point
10	•1	solve equation	•1	x = -7, x = 3
11	•1	correct substitution	•1	$\frac{-2\pm\sqrt{2^2-4\times1\times-7}}{2}$

	 evaluation discriminant solve for 1 root complete solution 	• ² 32 • ³ $x = 1 \cdot 8$ • ⁴ $x = -3 \cdot 8$ (rounding not required)
12	 correct substitution evaluate discriminant 	• ¹ $(2)^2 - 4 \times 3 \times -1$ • ² 16
	#2.2 interpret result	#2.2 real and unequal roots Since $b^2 - 4ac > 0$
13	•1 calculates and adds squares of two short sides	• $3 \cdot 3^2 + 5 \cdot 4^2 = 40 \cdot 05$
	• ² squares longest side	$\bullet^2 \qquad 6 \cdot 3^2 = 39 \cdot 69$
	#2.2 interprets result	#2.2 so $3 \cdot 3^2 + 5 \cdot 4^2 \neq 6 \cdot 3^2$ and hence triangle is not right- angled using converse of Pythagoras. The corners of the room are not right angled.
14	• ¹ radius and tangent	• ¹ either angle BAD or angle BCD = 90°
	• ² subtract	\bullet^2 360 - (90 + 90 + 126)
	\bullet^3 correct answer	• ³ 54°
15	• ¹ use volume scale factor	• ¹ $(15/150)^3 \times 12000$
	\bullet^2 correct answer	• ² 12 cm ³
16	#2.1 use a valid strategy	#2.1 eg centre angles $360/5 = 72^{\circ}$ each
	• ¹ correct answer	• ¹ 108°
17	 correct amplitude and period correctly annotated graph complete with roots and amplitude. 	 ●¹ 4 / − 4 and 360° ●² Correct graph
18	• ¹ correct period	• ¹ 120°
19	• ¹ solve for sin x°	• ¹ $\sin x^\circ = 0.25$
	• ² solve for x	\bullet^2 14.5°
	• ³ complete solution	\bullet^3 165.5°