

Show all working – Calculator allowed.

1. Simplify, giving your answer in surd form:

a) $\sqrt{12}$	(b) $\sqrt{27}$	(c) $\sqrt{32}$	(d) $\sqrt{75}$	(e) $\sqrt{20}$
f) $\sqrt{45}$	(g) $\sqrt{44}$	(h) $\sqrt{300}$	(i) $\sqrt{125}$	(j) √72

2. Simplify the following:

a) $y^3 \times y^4$ (b) $4m^3 \times 3m^2$ (c) $g^6 \div g^2$ (d) $(h^3)^2$ (e) $\frac{x^4}{x}$ f) $\frac{12x^5}{4x^2}$ (g) $\frac{h^7 \times h^{-2}}{h^3}$ (h) $y^9 \times (y^5)^{-2}$ (i) $4m^3 \times 2m^{-1/2}$ (j) $(2m^3)^3$

- **3.** Give your answers to the following questions in Scientific Notation.
 - a) There are 3.1×10^7 seconds in a solar year. How many seconds are there in 5 solar years?
 - **b**) The Lotto jackpot of $\pounds 8.4 \times 10^6$ was shared amongst 3 winners. How much did each winner receive?
 - c) A bee weighs approximately 1.98×10^{-4} kg. A newly hatched baby eagle is 93 times heavier. Calcualte the weight of the baby eagle.
- 4. Expand and simplify where appropriate:
 - a) 5(x+4)(b) 4(2x-3y)(c) a(3a+b)(d) m(5m-6)e) y(2y-6)(f) y(2y+x)(g) (x+3)(x+5)(h) (m+4)(m-3)
 - i) (h-3)(h-5) (j) (x-4)(x+5) (k) $(x+6)^2$ (l) $(x-5)^2$

5. a) Find the area of this rectangle in terms of x:

Show that the area of this composite shape can be given by $2x^2 + 16x + 22$

c) The large rectangle opposite has a small rectangle (4m by 3m) cut out of it. Show that the shaded area of the shape can be expressed as $x^2 + 11x + 12$

6. Factorise the following:

a) 2x + 6	(b) $14y - 7$	(c) $4a + 6b$	(d) $10x - 25y$
e) $y^2 + 7y$	(f) $a^2 - 3a$	(g) $3d^2 + 5d$	(h) $6m^2 - 3m$
i) $x^2 - 16$	(j) $y^2 - 25$	(k) $a^2 - 100$	(1) $p^2 - 1$
m) $x^2 + 6x + 5$	(n) $y^2 + 5y + 6$	(o) $h^2 + 8h + 15$	(p) $x^2 + 8x + 12$

- 7. Express the following in the form $(x + p)^2 + q$ [Complete the Square]
 - a) $x^2 + 6x + 4$ (b) $x^2 + 8x + 1$ (c) $x^2 + 8x - 10$ (d) $x^2 + 4x + 1$ (e) $x^2 + 10x - 8$ (f) $x^2 + 2x - 3$
- 8. Write each algebraic fraction in its simplest form:
 - a) $\frac{(x+4)(x+6)}{(x+6)}$ (b) $\frac{x-4}{(x-4)(x-5)}$ (c) $\frac{(x-6)^2}{(x-6)(x+4)}$
 - d) $\frac{(x+6)(x-7)}{(x-7)^2}$ (e) $\frac{(3x+5)^2}{(3x+5)(2x+1)}$ (f) $\frac{(2x+1)(4x-7)}{(4x-7)^2}$

9. Write each of these as a single fraction:

a)
$$\frac{3}{5} + \frac{5}{8}$$
 (b) $\frac{6}{x} + \frac{3}{y}$ (c) $\frac{3}{b} + \frac{4}{a}$ (d) $\frac{8}{x} - \frac{3}{y}$
e) $\frac{2}{m} - \frac{3}{n}$ (f) $\frac{3}{4} \times \frac{5}{7}$ (g) $\frac{6}{7} \times \frac{2}{3}$ (h) $\frac{4}{x} \times \frac{3}{y}$
i) $\frac{4}{a} \times \frac{b}{c}$ (j) $\frac{5}{6} \div \frac{2}{3}$ (k) $\frac{c}{d} \div \frac{4}{b}$ (l) $\frac{x}{5} \div \frac{y}{z}$

10. For the following points A(6, 3), B(8, 4), C(4, 6) & D(6, 10):

- a) Find the gradient of AB (b) Find the gradient of CD
- c) Which line is steeper? Explain your answer.
- **11.** For the following points E(-2, 1), F(1, 4), G(-4, 2) & H(6, 4):
 - a) Find the gradient of EF (b) Find the gradient of GH
 - c) Which line is steeper? Explain your answer.

12. Find the gradient of the line joining the points:

- **a**) K(4, -3) & L(-1, 9) (**b**) M(-4, -3) & N(-1, -7)
- 13. Calculate the volume of the following, giving your answer correct to 2 Sig. Figs.

14. A tank in the shape of a cuboid is full of water.The water is poured out into a cylinder shaped tub.The dimensions of both containers are shown here:

Will the cylinder hold <u>all</u> the water from the tank or will it overflow. Explain your answer fully.

15. Some plastic spherical ball bearings are melted down And remoulded to make a cone. The ball bearings have A diameter of 1.6cm. The cone must have a radius of 3.4cm and a height of 4.2cm. How many ball bearings need to be melted down to make the cone? Explain your answer fully.

16. Calculate the Arc Length of the Minor arc in the following:

- **17.** Calculate the Minor Sector Area of the shapes above.
- 18. The diagram shows a sector of a circle, centre C.The radius of the circle is 7.3cm and angle PCR is 54°Calculate the area of the sector PCR.

A sector of a circle, centre O, is shown. The radius of the circle is 2.3m & angle AOB is 65° Find the length of the arc AB 20. A sweet shop sells sweets in a cone shaped. cardboard container The cone is formed by cutting a sector from a circular piece of cardboard as shown. The radius of the circle is 30cm and angle AOB is 100°

- a) Calculate the area of the card used to make the cone.
- **b**) Calculate the lengtyh of arc AB
- c) To strengthen the cone the shop wants the top rim to be edged in a red plastic trim.What is the maximum number of cones which can be edged using 25 metres of plastic trim?
- 21. Party hats for a kids birthday party are made from cardboard sectors as shown below.The radius of OB is 8cm and angle AOB is 135°. Yellow ribbon is used to edge the base of the hats.What is the maximum number of hats which can be decorated with 125 metres of ribbon?

