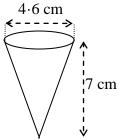
Practice Unit Assessment (3) for National 5 Expressions and Formulae

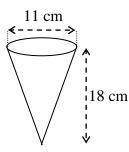

- 1. Simplify, giving your answer in surd form: $\sqrt{147}$
- **2.** (a) Simplify (i) $\frac{x^2 \times x^8}{x^{-3}}$ (ii) $6x^{\frac{1}{3}} \times 3x^{-2}$
 - (b) A factory produces $2 \cdot 4 \times 10^4$ cakes every day. How many cakes will it produce in the month of April? Give you answer in Scientific Notation.
- **3.** Expand and simplify where appropriate:
 - (a) m(3m n) (b) (p + 5)(p + 8)
- **4.** Factorise: (a) $h^2 11h$ (b) $q^2 144$ (c) $a^2 12z + 32$
- 5. Express $x^2 + 7x + 9$ in the form $(x + p)^2 + q$.

6. Write
$$\frac{(2x+5)(x+7)}{(2x+5)^2} (x \neq -2.5)$$
 in its simplest form.

7. Write each of the following as a single fraction:

(a)
$$\frac{4}{m} - \frac{9}{n}$$
 $(m, n \neq 0)$ (b) $\frac{4}{k} \div \frac{k}{l}$ $(h \neq 0)$

- 8. Points C and D have coordinates (-8, -2) and (6, -4) respectively. Calculate the gradient of CD.
- **9.** Calculate the volume of a cone with diameter 4.6 cm and height 7 cm giving your answer correct to 2 significant figures.



10. (a) Calculate the area of the sector of a circle in the diagram which has radius 6.8 cm.

- (b) These sectors have to be cut from a piece of card with an area of 6500 cm².Assuming there is not waste, how many sectors can be cut from the card?
- **11.** A candle is in the shape of a sphere with a diameter of 10 cm.
 - (a) Calculate the volume of the candle.

The candle was melted down and poured into a conical container like the one shown in this diagram.

(b) Will the cone be big enough to hold the wax? [assume there is no wax lost during the melting process]

End of Question Paper

Question	Main points of expected respon	ISES
1	• ¹ simplify surd	● ¹ 7√3
2 (a) (i) (ii)	 simplify numerator correct answer correct coefficient 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(b)	 simplify indices calculation of distance 	• ⁴ $x^{-\frac{5}{3}}$ in answer $18x^{-\frac{5}{3}}$ • ⁵ $30 \times 2 \cdot 4 \times 10^{4}$ = 72×10^{4}
	• ⁶ express in standard form	\bullet^6 7.2 × 10 ⁵
3 (a) (b)	 ¹ multiply out brackets ² multiply out the brackets ³ collect like terms 	• $3m^2 - mn$ • $p^2 + 8p + 5p + 40$ • $p^2 + 13p + 40$
4 (a) (b)	 factorise expression factorise difference of two squares 	• ¹ $h(h-11)$ • ² $(q+12)(q-12)$
(c)	 start to factorise trinomial expression complete factorisation 	• ³ $(a \ 4)(a \ 8)$ ie evidence of brackets, a , 4 and 8 • ⁴ $(a-4)(a-8)$
5	 start of process complete process 	• ¹ $(x + 3 \cdot 5)^2$ • ² $(x + 3 \cdot 5)^2 - 3 \cdot 25$
6	• ¹ reduce to simplest form	$\bullet^1 \qquad \frac{x+7}{2x+5}$
7 (a)	• ¹ denominator correct	$ \begin{array}{ccc} \bullet^{1} & \frac{///}{mn} \\ 2 & 4n - 9m \end{array} $
(b)	\bullet^2 numerator correct	•~
	• ³ multiply by inversion of fraction	$\bullet^3 \qquad \times \frac{l}{k}$
	• ⁴ correct answer	$\bullet^4 \qquad \frac{4l}{k^2}$
8	• ¹ evidence of gradient calculation	• ¹ Uses $\frac{y_2 - y_1}{x_2 - x_1}$ or equivalent
	• ² correct gradient	\bullet^2 $-\frac{1}{7}$

Points of reasoning are marked # in the table.

9	• ¹ substitute and start calculation	• ¹ $\frac{1}{3} \times \pi \times 2 \cdot 3^2 \times 7$ $\frac{1}{3} \times \pi \times 37 \cdot 03$ or
	\bullet^2 complete calculation	\bullet^2 equivalent • ² 37.75806 cm ³ or equivalent
	• ³ round calculation to 2 significant figures	\bullet^3 38 cm ³
10 (a)	• ¹ correct ratio and substitution	$\bullet^1 \qquad \frac{135}{360} \times \pi \times 6 \cdot 8^2$
(b)	\bullet^2 calculate sector area	• ² 54.4476 cm or equivalent
	#2.1 valid strategy#2.2 interpretation of answer	#2.1 eg 6 500 ÷ 54·4476 #2.2 (for 119·38) 119 sectors can be cut.
11	#2.1 uses valid strategy to find volumes of cone and sphere	# 2.1 Substitutes relevant values into correct formulae
	 calculate volume of sphere calculate volume of cone 	• ¹ $523 \cdot 33 \text{ cm}^3$ or equivalent • ² $569 \cdot 91 \text{ cm}^3$ or equivalent
	# 2.2 states conclusion	# 2.2 cone is big enough since 523.33 < 569.91