# **St. Peter the Apostle High School**

# **Mathematics Dept.**



# PracticePrelim FivePaper 1

### **Duration: 1 Hour**

Marks: 40

- 1. Attempt ALL questions.
- 2. You <u>MAY NOT</u> use a calculator.
- 3. Write your solutions on the blank paper provided.
- 4. Full credit will be given only where the solution contains appropriate working.
- 5. Square-ruled paper will be provided if necessary.

### **Formula Sheet**

The roots of 
$$ax^2 + bx + c = 0$$
 are  $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$ 

Sine rule:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule:

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
 or  $\cos A = \frac{b}{c}$ 

$$=\frac{b^2+c^2-a^2}{2bc}$$

Area of a triangle: Area =  $\frac{1}{2}ab \sin C$ 

Volume of a sphere: Volume =  $\frac{4}{3}\pi r^3$ 

Volume of a cone: Volume =  $\frac{1}{3}\pi r^2 h$ 

Volume of a pyramid: Volume = 
$$\frac{1}{3}Ah$$

Standard deviation: 
$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n - 1}}$$
, where n is the sample size.

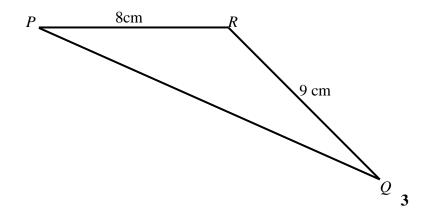
1. Calculate 
$$2\frac{1}{6} \times \frac{2}{5}$$
 2

2. Find the gradient and y-intercept of the line with equation 5x + 7y + 35 = 0

3. Change the subject of this formula 
$$V = \pi r^2 h$$
 to 'r' 2

**4.** a) Factorise: 
$$25x^2 - 49$$
 **2**

**b**) Factorise fully: 
$$10x^2 + 9x - 7$$
 2


c) Hence, or otherwise, simplify 
$$\frac{25x^2 - 49}{10x^2 + 9x - 7}$$
 1

5. Vectors 
$$\underline{a}$$
 and  $\underline{b}$  have components as follows:  $\underline{a} = \begin{pmatrix} 4 \\ -3 \\ 4 \end{pmatrix}$  and  $\underline{b} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ 

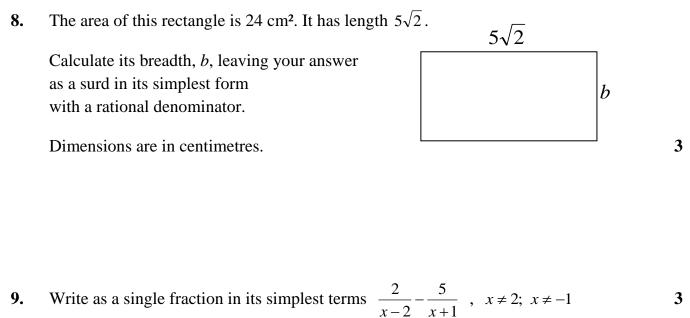
**a**) Find the components of the vector represented by  $\underline{a} - 2\underline{b}$ 

**b**) Calculate the magnitude of the vector represented by  $\underline{a} - 2\underline{b}$ 

- 6. Multiply the brackets and simplify:  $(x-2)(5x^2-4x-2)$
- 7. For the triangle *PQR* calculate the <u>exact value</u> of sin *RPQ* if: the exact value of sin *PQR* is  $\frac{1}{3}$ *AC* = 8cm and *BC* = 9cm



2


1

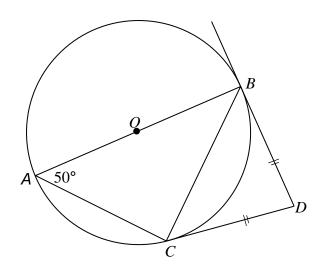
**Marks** 

3

3

### <u>Marks</u>



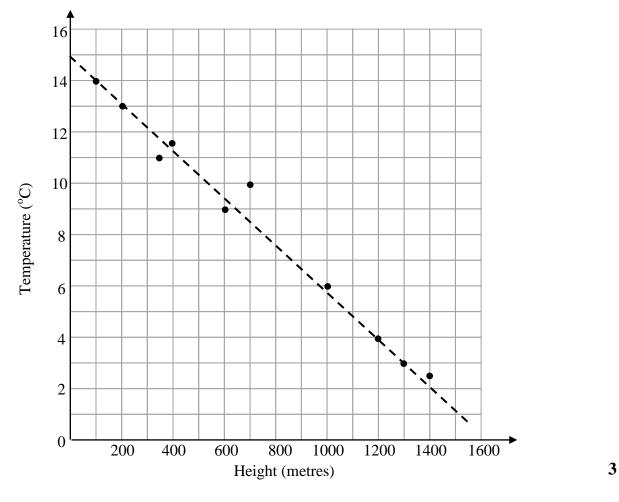

**10.** Simplify  $x^4y^3 \div x^6y$  expressing your answer with positive powers. **2** 

**11.** *AB* is a diameter and *O* is the centre of the circle shown below.

*BD* is a tangent to the circle with *B* the point of contact.

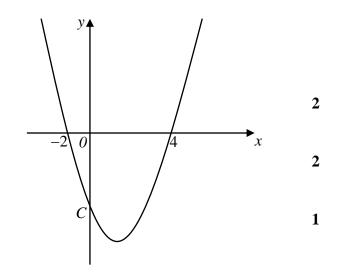
Triangle BCD is isosceles.

Given that angle  $BAC = 50^{\circ}$ , find the size of angle *BDC*.




3

# **12.** The graph shows the height above sea level, in metres, of ten places in Scotland and the corresponding mean temperature in degrees Celsius.


St. Andrews in Fife is 100 m above sea level and has a mean temperature of  $14^{\circ}$ C The top of the Caitngorm is 1300 m above sea level and has a mean temperature of  $3^{\circ}$ C

Determine the equation of the line of best fit which has also been drawn on the graph.



**13.** The graph shown has equation y = (x + 2)(x - 4).

- a) Find the coordinates of point *C*, where the graph cuts the *y*-axis.
- **b)** Find the coordinates of the turning point.
- c) State the equation of the axis of symmetry of the parabola.

