

## $M\alpha$ the matics

## National 5 Practice Paper H

Paper 1

Duration - 1 hour

Total marks - 40

- You may NOT use a calculator
- Attempt all the questions.
- Use blue or black ink.
- $\circ$  Full credit will only be given to solutions which contain appropriate working.
- $\circ$   $\;$  State the units for your answer where appropriate.

FORMULAE LIST

| The roots of are     | $ax^{2} + bx + c = 0$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$                                                              |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Sine rule:           | $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$                                                                      |
| Cosine rule:         | $a^{2} = b^{2} + c^{2} - 2bc \cos A$ or $\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$                                          |
| Area of a triangle:  | $A = \frac{1}{2}ab\sin C$                                                                                                     |
| Volume of a Sphere:  | $V = \frac{4}{3}\pi r^3$                                                                                                      |
| Volume of a cone:    | $V = \frac{1}{3}\pi r^2 h$                                                                                                    |
| Volume of a pyramid: | $V = \frac{1}{3}Ah$                                                                                                           |
| Standard deviation:  | $s = \sqrt{\frac{\sum (x-\bar{x})^2}{n-1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2/n}{n-1}}$ , where <i>n</i> is the sample size. |
|                      |                                                                                                                               |

1. Evaluate

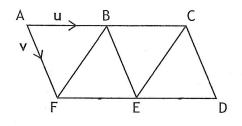
$$4\frac{1}{3}-1\frac{1}{2}$$

2. Expand and simplify

$$(3x-2)(2x^2+x+5)$$

3. Change the subject of the formula to *m*.

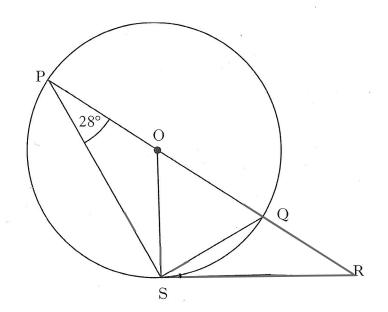
$$L = \frac{\sqrt{m}}{k}$$


MARKS

2



4. The diagram shows a tiling of congruent triangles.


Vectors u and v are represented by  $\overrightarrow{AB}$  and  $\overrightarrow{AF}$  respectively.



- (a) Express  $\overrightarrow{AD}$  in terms of **u** and **v**.
- (b) Express  $\overrightarrow{CE}$  in terms of **u** and **v**.

1

Total marks 2



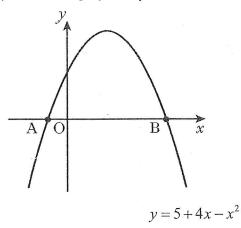
In the above diagram,

5.

- 0 is the centre of the circle
- PQ is a diameter of the circle
- PQR is a straight line
- RS is a tangent to the circle at S
- angle QPS is 28°

Calculate the size of angle QRS.

MARKS


3

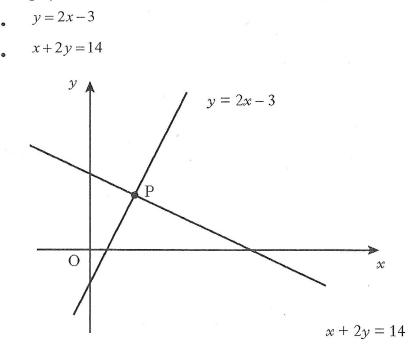
2

6. Express  $\frac{3y^2 - 6y}{y^2 + y - 6}$  in its simplest form.

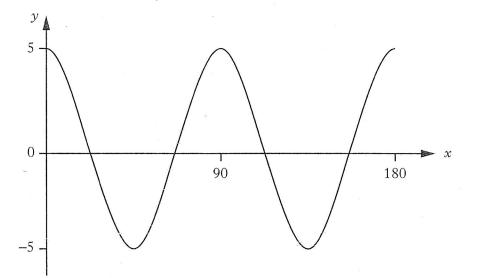
**7.** Evaluate  $9^{\frac{3}{2}}$ .

8. The diagram shows part of the graph of  $y = 5 + 4x - x^2$ .



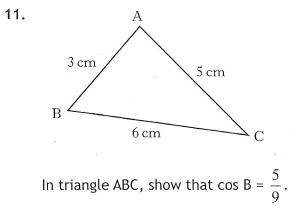

A is the point (-1, 0). B is the point (5, 0).

(a) State the equation of the axis of symmetry of the graph. 2


(b) Hence, find the maximum value of  $y = 5 + 4x - x^2$ .

Total marks 4

9. The graph below shows two straight lines.




The lines intersect at the point P. Find, **algebraically**, the coordinates of P.



10. Part of the graph of  $y = a \cos bx^{\circ}$  is shown in the diagram.

State the values of a and b.







The rectangle above has length  $2\sqrt{3}$  centimetres and breadth  $\sqrt{6}$  centimetres.

Calculate the area of the rectangle.

Express your answer as a surd in its simplest form.

**13.** Simplify  $\frac{3}{m} + \frac{4}{m+1}$ .

14. Prove that the roots of the equation  $2x^2 + 8x + 5 = 0$  are real and irrational.

## [END OF PRACTICE QUESTION PAPER]

3

3