

National Qualifications SPECIMEN ONLY

S847/75/01

Mathematics Paper 1 (Non-Calculator)

Marking Instructions

These marking instructions have been provided to show how SQA would mark this specimen question paper.

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (ie secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the user's responsibility to obtain the necessary copyright clearance.

Marking instructions for each question

Que	stion	Generic scheme	Illustrative scheme	Max mark
1		Ans: $7\frac{3}{5}$		2
		 start simplification and know how to divide fractions 	•1 $\frac{19}{8} \times \frac{16}{5}$	
		 ² consistent answer in simplest form 	• ² $7\frac{3}{5}$ or $\frac{38}{5}$	
2		Ans: $x > -5$		3
		•1 expand bracket	•1 $11-2-6x < 39$	
		• ² collect like terms	• ² $-6x < 30$ or $-30 < 6x$	
		• ³ solve for x	• ³ $x > -5$ or $-5 < x$	
3		Ans: $7\sqrt{2}$ • ¹ add vectors correctly		3
		 ² know how to find magnitude ³ find magnitude as a surd in its simplest form 	• ² $\sqrt{9^2 + (-1)^2 + (-4)^2}$ • ³ $7\sqrt{2}$	
4		Ans: $a = 5$ • 1 know to substitute (-3, 45) into $y = ax^2$ • 2 solve equation for a	• 1 $45 = a(-3)^{2}$ or equivalent • 2 $a = 5$	2
5		Ans: two real and distinct roots		2
		• ¹ find discriminant	•1 53 $[5^2 - 4 \times 7 \times (-1)]$	-
		• ² state nature of roots	• ² two real and distinct roots	

Que	stion	Generic scheme	Illustrative scheme	Max mark
6	(a)	Ans: $W = 20A + 40$ • ¹ gradient • ² substitute gradient and a point into $y-b = m(x-a)$ or y = mx + c	• $\frac{240}{12}$ or equivalent • $\frac{240}{12}$ or equivalent • $\frac{2}{12}$ $y-100 = \frac{240}{12}(x-3)$ or $y-340 = \frac{240}{12}(x-15)$ or $100 = \frac{240}{12} \times 3 + c$ or $340 = \frac{240}{12} \times 15 + c$	3
		• ³ state equation in terms of <i>W</i> and <i>A</i> and in simplest form (remove any brackets and collect constants)	• ³ $W = 20A + 40$ or equivalent	
6	(b)	 Ans: 20×12+40 = 280 kg ¹ calculate weight using equation from part (a) 	• ¹ 20×12+40 = 280kg stated explicitly	1
7	(a)	 Ans: median = 19.5, SIQR = 4.5 •¹ find median •² find quartiles •³ calculate semi-interquartile range 	 1 19.5 2 17 and 26 3 4.5 	3
7	(b)	 Ans: valid comments ¹ compare medians ² compare semi-interquartile ranges 	 ¹ On average the second round's scores are higher ² The second round's scores are more consistent. 	2

Ques	stion	Generic scheme	Illustrative scheme	Max mark
8	(a)	Ans: $5a + 3c = 158 \cdot 25$		1
		• ¹ construct equation	• $5a + 3c = 158 \cdot 25$	
8	(b)	Ans: $3a + 2c = 98$		1
		• ¹ construct equation	•1 $3a + 2c = 98$	
8	(c)	Ans: Adult ticket costs £22·50 Child ticket costs £15·25		4
		• ¹ evidence of scaling	•1 eg $\frac{10a + 6c = 316.50}{9a + 6c = 294}$	
		• ² follow a valid strategy through to produce values for <i>a</i> and <i>c</i>	• ² values for a and c	
		• ³ calculate correct values for <i>a</i> and <i>c</i>	• ³ $a = 22.5$ and $c = 15.25$	
		• ⁴ communicate answers in money	• ⁴ Adult £22·50 Child £15·25	
9		Ans: 600000		3
		• ¹ know that $80\% = 480000$	•1 80% = 480000	
		• ² begin valid strategy	• ² $10\% = 60000$ or equivalent	
		• ³ answer	• ³ 600000	
10		Ans: $\frac{2\sqrt{5}}{5}$		2
		• ¹ correct substitution	• ¹ $\frac{2}{\sqrt{5}}$ • ² $\frac{2\sqrt{5}}{5}$	
		• ² correct answer	$\bullet^2 \frac{2\sqrt{5}}{5}$	

Ques	stion	Generic scheme	Illustrative scheme	Max mark
11	(a)	Ans: b-a		1
		• ¹ correct answer	• ¹ $\mathbf{b} - \mathbf{a}$ or $-\mathbf{a} + \mathbf{b}$	
11	(b)	Ans: 2(b-a)		1
		• ¹ correct answer	•1 $2(b-a)$ or $2(-a+b)$	
12		Ans: $a = 4, b = 3$		2
		• ¹ state the value of a	• ¹ 4	
		$ullet^2$ state the value of b	•2 3	
13	(a)	Ans: $(x-4)^2 + 3$		2
		•1 correct bracket with square	•1 $(x-4)^2$	
		• ² complete process	• $(x-4)^2$ • $(x-4)^2 + 3$	
13	(b)	Ans: (0,19) (4,3) (4,3) (4,3) (4,3) (4,3) (4,3) (4,3) (4,3) (4,3) (4,3) (4,3) (4,3) (4,3) (4,3) (4,3) (5,1) (5	 •¹ (4,3) •² parabola with minimum turning point consistent with •¹ •³ (0,19) 	3

Ques	stion	Generic scheme	Illustrative scheme	Max mark
14		Ans: $\frac{x-22}{(x+2)(x-4)}$		3
		• ¹ correct denominator	• ¹ $(x+2)(x-4)$ • ² $4(x-4)-3(x+2)$	
		• ² correct numerator	• ² 4(x-4)-3(x+2)	
		• ³ remove brackets and collect like terms in numerator	• ³ $\frac{x-22}{(x+2)(x-4)}$	
15		Ans: $\sin^2 x^\circ$	2	2
		 identify correct trigonometric identity to be used 	• $\frac{\sin x}{\cos x}$ or $\frac{\sin^2 x}{\cos^2 x}$	
		 ² use correct trigonometric identity to simplify expression 	• ² $\frac{\sin^2 x}{\cos^2 x} \times \cos^2 x = \sin^2 x$	
16	(a)	Ans: $r-5$		1
		• ¹ state expression	• ¹ $r-5$	
16	(b)	Ans: 10·6		3
		 ¹ correct use of Pythagoras' Theorem 	•1 $r^2 = (r-5)^2 + 9^2$	
		• ² expand bracket	• ² $r^2 = r^2 - 10r + 25 + 81$	
		• ³ solve equation	• ³ $r = 10.6$	

[END OF SPECIMEN MARKING INSTRUCTIONS]