Paper 2

Award marks in whole numbers only

Ques	stion	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
1		A snail crawls 3 kilometres in 16 days.		
		What is the average speed of the snail in metres per second?		
		Give your answer in scientific notation correct to 2 significant figures .		
		Ans: $2 \cdot 2 \times 10^{-3}$	4	
		• ¹ evidence of correct formula with units		• ¹ $\frac{3km}{16 \text{ days}}$
		• ² correct conversion of units		$\bullet^2 \qquad \frac{3000}{16 \times 24 \times 60 \times 60}$
		• ³ unrounded solution		• ³ 0.00217
		• ⁴ correct rounding and scientific notation		• ⁴ $2 \cdot 2 \times 10^{-3}$
Note	s:		(KU)	
(i)	for 2.	2×10^{-3} with/without working		award 4/4
(ii)	for 2.	$17 \dots \times 10^{-3}$, with or without working		award 3/4
(iii)	for $\frac{3}{1}$	$\frac{3}{6}$, leading to 1.9×10^{-1}		award 1/4
(iv)	for $\frac{3}{1}$	$\frac{3}{6}$, followed by $\frac{3000}{16 \times 24 \times 60 \times 60}$		award the first two marks
(v)	for $\frac{3}{1}$	$\frac{3}{6}$, followed by a correct partial conversion	on	award the first mark

Que	stion	Marking Scheme			Illustrations of evidence for awarding a
-			Give 1 mark for each •	Mark	mark at each •
2		$2x^2 + \frac{1}{2}$ Give y	the equation 7x - 3 = 0 your answers correct to 1 nal place .		
			0.4 or -3.9	4	
		• ¹	correct substitution into quadratic formula		$\bullet^1 \qquad \frac{-7 \pm \sqrt{7^2 - 4 \times 2 \times -3}}{4}$
		• ²	correct discriminant		• ² 73
		• ³	unrounded solution		• ³ 0.385, -3.885
		• ⁴	rounded solution	(KU)	• ⁴ 0·4, -3·9
Note	es:			(110)	
	alte	ernative	e evidence for 3 rd and 4 th marks		
	3 rd 1	mark (o	ne solution and rounded)	0.385	$\rightarrow 0.4$
	4 th 1	mark (a	nother solution and rounded)	- 3.88	$35 \rightarrow 3.9$
(i)	only	y the fir	st mark is available for candidates	s who proc	cess to a negative discriminant
(ii)	unles	SS	ho do not give an unrounded num wer is 0.4 , -3.9 where $3/4$ may be		t be awarded the last 2 marks,

Que	estion	n Marking Scheme	Max	Illustrations of evidence for awarding a
		Give 1 mark for each •	Mark	mark at each •
3	а	A concrete block is in the shape of a prism. $\begin{array}{c} 22cm \\ 22cm \\ 32cm \\ \hline 32cm \\ \hline 32cm \\ \hline 22cm \\ \hline 20cm \\ \hline 32cm \\ \hline 20cm \\ \hline 32cm \\ \hline 20cm \\ \hline$		
		Ans: 540 cm ²	2	
		Ans: 540 cm	3	
		• ¹ beginning process		• ¹ $2 \times \frac{1}{2} \times 5 \times 20 + (22 \times 20)$ or
				$\frac{1}{2} \times 20 \times (22 + 32)$
		• ² processing		• ² 100 + 440 or 10×54
		\bullet^3 calculation	(KU)	• ³ 540
3	b	Calculate the volume of the concrete block.		
		Ans: 32 400 cm ³	1	
		\bullet^1 calculation	(KU)	• ¹ 32 400

Que	stion	0	Max	Illustrations of evidence for awarding a		
		Give 1 mark for each •	Mark	mark at each •		
4		"Topfl	ear, 1296 learner drivers from ight" school of motoring passed riving test.			
			as 72% of those who sat their g test from Topflight.			
		How n	nany failed their driving test?			
		Ans:	504	3		
		• ¹	valid strategy		• ¹	72% = 1296
		•2	processing		•2	$1\% = \frac{1296}{72} = 18$
		• ³	solution	(RE)	•3	$18 \times 28 = 504$
Note	s:					
(i)) for 504, with/without working award 3/3					
(ii)	i) for candidates who calculate either 28% or 72% of 1296					award 0/3
(iii)	the fi	nal mark	t is for multiplying 1% by 28			

Que	stion	Marking Scheme	Max	Illustrations of evidence for awarding a	
		Give 1 mark for each •	Mark	mark at each •	
5		ABC is an isosceles triangle with angle ACB = 30° .	è		
		AC = BC = x centimetres.			
		C x cm 30° $x \text{ cm}$ A $BThe area of triangle ABC is 9 squarecentimetres. Calculate the value of x.$			
		Ans: $x = 6$	3		
		• ¹ correct substitution into area formula		• ¹ $9 = \frac{1}{2} \times x^2 \times \sin 30^\circ$	
		\bullet^2 processing		• ² 36	
		• ³ solution	(RE)	• ³ $x = 6$	
Note	s:	1	(112)	1	
(i)	accep	of $9 = \frac{1}{2}$ ab sin 30° for first mark			

Ques	stion		arking Scheme	Max		rations of evidence for awarding a
		Give 1 mark for each •	Mark	mark at each •		
6		high, s a circl It is su metres a poin	bile phone mast, 18.2 metres stands vertically in the centre of e. apported by a wire rope, 19 s long, attached to the ground at t on the circumference of the as shown.			
			19 m 18·2 m			
		Calcul circle.	ate the circumference of the			
		Ans:	34·3 m	3		
		\bullet^1	correct use of Pythagoras		• ¹	$r^2 = 19^2 - 18 \cdot 2^2$
		• ²	calculating radius		•2	5.455
		•3	calculating circumference	(KU)	•3	34.3

Question	Marking Scheme	Max	Illustrations of evidence for awarding a	
-	Give 1 mark for each •	Mark	mark at each •	
7	Jack weighs 94 kilograms. On the 1st of January, he starts a diet which is designed to reduce his weight by 7% per month. During which month should he achieve his target weight of 73 kilograms?			
	Show all your working. Ans: during April	4		
	• ¹ reduction factor	-	• ¹ 0.93	
	• ² processing		$\bullet^2 \qquad 0.93 \times 94 = 87.42$	
	\bullet^3 continuation		• ³ 75·6	
	• ⁴ communication	(RE)	• ⁴ During April or 4 th month	
Notes:	1	()	1	

Question	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •	
8	As the pendulum of a clock swings, its tip moves through an arc of a circle. 50 cm B $36.7 cm$			
	The length of the pendulum is 50 centimetres. The length of the arc is 36.7 centimetres. Calculate x° , the angle through which the pendulum swings.			
	Ans: 42°	3		
	• ¹ strategy		\bullet^1 $\frac{x}{360}$	
	\bullet^2 strategy		$\bullet^2 \qquad \frac{36\cdot 7}{100\pi}$	
	\bullet^3 solution	(RE)	\bullet^3 42°	
Notes:				
(i) for u	se of $C = \pi r^2$, the 1 st and 3 rd marks are still	available		

Question		Max Mark	Illustrations of evidence for awarding a mark at each •	
	Give 1 mark for each •			
9	In triangle THB: • angle TBH = 90° • angle THB = 32° G is a point on HB. • angle TGB = 57° • GH = 46 metres.			
	$H \xrightarrow{32^{\circ}} 57^{\circ} B$			
	Calculate the length of TB.			
	Ans: 48·4 m	4		
	• ¹ correct use of sine rule in triangle THG		• ¹ $\frac{\mathrm{TG}}{\sin 32^{\circ}} = \frac{46}{\sin 25^{\circ}}$	
	\bullet^2 calculation		• ² TG = 57.679	
	• ³ appropriate trig ratio		• ³ $\sin 57^\circ = \frac{TB}{57 \cdot 679}$	
	• ⁴ solution	(KU)	• ⁴ TB = $48 \cdot 37 \dots$	
Notes:		/	1	
Notes:				

(ii) the 2^{nd} and 4^{th} marks are available only within a valid strategy

Que	estio	n	Marking Scheme	Max	Illustrations of evidence for awarding a
			Give 1 mark for each •	Mark	mark at each •
10			A function is given by the formula, $f(x) = 4 \times 2^x$.		
	a		Evaluate $f(3)$.		
			Ans: 32	2	
			• ¹ substitution		• ¹ 4×2^3
			\bullet^2 calculation	(KU)	• ² 32
10	b		Given that $f(m) = 4$, find the value of m .		
			Ans: $m = 0$	2	
			• ¹ substitution		• ¹ $4 = 4 \times 2^m$
			• ² solution	(RE)	• ² $m=0$

Que	estio	Marking Scheme Give 1 mark for each •	Max	Illustrations of evidence for awarding a	
	1 1		Mark	mark at each •	
11		Water flows through a horizontal pipe of diameter 60 centimetres. The surface width, AB, of the water is 55 centimetres.			
	a	Calculate the depth, d , of the water in the pipe.			
			4		
		Ans: 18.01 cm	4		
		• ¹ recognition of right angle		• ¹ use of Pythagoras	
		• ² processing		• ² $30^2 - 27 \cdot 5^2$	
		• ³ processing		• ³ 11.99	
		\bullet^4 solution	(KU)	• ⁴ 18·01	
Not	es:				
(i)	fo	one mark, the right angle may be stated or	indicated of	on a diagram	
11	b	What other depth of water would give the same surface width?			
		Ans: 41.99 cm	1		
		• ¹ communication		\bullet^1 41.99	
			(RE)		

Questio	on Mar	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •	
	Give				
12	show y	$A \qquad B \qquad y = 1.7$			
	The grap show	line $y = 1.7$ is drawn. It cuts the h of $y = 1 + \sin x^{\circ}$ at A and B as			
	Calc B.	ulate the <i>x</i> -coordinates of A and			
	Ans	44·4°, 135·6°	4		
	•1	equating functions		• ¹ $1 + \sin x^{\circ} = 1.7$	
	• ²	processing		• ² $\sin x^{\circ} = 0.7$	
	•3	first solution		\bullet^3 44.4°	
	•4	second solution	(RE)	• ⁴ 135·6°	
Notes:					
		who obtain a negative value of sin x the 3rd and 4th quadrants	a may still	be awarded the last two marks	
(ii) ca	andidates	who give more than two answers ca	nnot be a	warded the last mark	
(iii) ca	aution	$44 \cdot 4^{\circ} + 90^{\circ} = 134 \cdot 4^{\circ}$ this is close to the correct answer			

Question	Marking Scheme	Max Mork	Illustrations of evidence for awarding a
	Give 1 mark for each •	Mark	mark at each •
13	Asim has a poster which is 25 centimetres wide and 40 centimetres high.		
	40 cm		
	He decides to place it on a white card. The card and the poster are mathematically similar.		
	The border is 5 centimetres wide on three sides and x centimetres wide on the fourth side as shown.		
	5 cm 5 cm x cm		
	Calculate the value of <i>x</i> .		

Question	Marking Scheme	Max	Illustrations of evidence for awarding a
	Give 1 mark for each •	Mark	mark at each •
13	Ans: $x = 11$	4	
	Method 1		25
	• ¹ strategy		• ¹ scale factor = $\frac{35}{25}$
	\bullet^2 applying scale factor		• ² $\left(\frac{7}{5}\right) \times 40$
	• ³ processing		• ³ 56
	\bullet^4 solution		• ⁴ 11
	Ans: $x = 11$		
	Method 2		
	• ¹ strategy		• $\frac{25}{40}$ or $\frac{35}{45+x}$
	\bullet^2 equating ratios		• ² $\frac{25}{40} = \frac{35}{45+x}$
	\bullet^3 cross multiplication		• ³ $25(45 + x) = 35 \times 40$
	\bullet^4 solution		• ⁴ 11
		(RE)	

Question	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •		
14	In triangle ABC: • $\cos A = 0.5$ • $AB = 6$ centimetres • $BC = 2x$ centimetres • $AC = x$ centimetres • $AC = x$ centimetres				
	B $2x \text{ cm}$ C Show that $x^2 + 2x - 12 = 0$				
	Ans: $x^2 + 2x - 12 = 0$	3			
	• ¹ substitution into cosine rule		• ¹ $(2x)^2 = x^2 + 6^2 - 2 \times x \times 6 \times 0.5$		
	• ² processing		• ² $4x^2 = x^2 - 6x + 36$		
	• ³ completion of proof	(RE)	• ³ $x^2 + 2x - 12 = 0$		
Notes:					
(i) $2x^2$ is	s to be treated as bad form for the 1 st mark				
(ii) the fi	i) the final mark is given only for an explicit statement				

KU 25 RE 27

OVERALL TOTAL MARKS 45 KU 45 RE

[END OF PAPER 2 MARKING INSTRUCTIONS]