Part Two: Mathematics Standard Grade - Credit

Paper 1

Award marks in whole numbers only

Que	stion	Marking Scheme		Illustrations of evidence for awarding a
		Give 1 mark for each •	Mark	mark at each •
1		Evaluate		
		$86{\cdot}5 - 3{\cdot}651 \times 20$		
		Ans: 13·48	2	
		• ¹ knowing correct order of operations		• ¹ must involve a multiplication followed by a subtraction
		• ² carrying out both calculations	(KU)	• ² 13.48
Note	es:			
(i)	for 13.48 with/without working			award 2/2
(ii)) for 1656.98 with/without working			award 1/2
(iii)	for 73	3.02 with no further calculation		award 0/2

Que	stio	n	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
2			Evaluate		
			$\frac{1}{2} \div 2\frac{2}{3}$		
			Ans: $\frac{3}{16}$	2	
			• ¹ process		$\bullet^1 \qquad \frac{1}{2} \times \frac{3}{8}$
			\bullet^2 a correct calculation	(KU)	\bullet^2 $\frac{3}{16}$
Not	es:			()	
(i)	(i) for $\frac{3}{16}$ with/without working award 2/2				award 2/2
(ii)	i) for $\frac{8}{6}$ or $1\frac{2}{6}$ with/without working award 1/2				
(iii)	$\frac{3}{10}$	$\frac{3}{6}$ le	ading to $5\frac{1}{3}$ cannot be awarded the second	d mark	

3	A group help the The foll	m stop smoking.	a course to	Mark	mar	∙k at each •
3	help the The foll	m stop smoking.	a course to			
			A group of people attended a course to help them stop smoking. The following table shows the statistics before and after the course.			
		Mean number of cigarettes smoked per person per day	Standard deviation			
	Before	20.8	8.5			
	After	9.6	12.0			
	results.	vo valid comments : ee below	about these	2		
	• ¹ c	omment about mea	n		• ¹	on average fewer cigarettes were smoked per person after the course
		omment about standeviation	dard		•2	the number of cigarettes smoked per person was more varied after the course
				(RE)		
Notes:						
(i) do no	ot accent 't	he average number	of cigarettes	smoked n	er per	son was less'
.,	re-re-			P	r r sr	
(ii) do no	ot accept 't	he standard deviati	on after the co	ourse was	greate	er'

Oue	stion	Marking Scheme	Max	Illustrations of evidence for awarding a	
		Give 1 mark for each •	Mark	mark at each •	
4		Change the subject of the formula to <i>r</i> . $A = 4\pi r^2$			
		Ans: $r = \sqrt{\frac{A}{4\pi}}$	2		
		• ¹ starting process		• ¹ $r^2 = \frac{A}{4\pi}$	
		• ² finding the square root	(KU)	• ² $r = \sqrt{\frac{A}{4\pi}}$	
Note	es:	·			
(i)	$r = \frac{\sqrt{A}}{\sqrt{4\pi}}$ award 2/2				
(ii)	for r	$=\frac{\sqrt{A}}{4\pi} \text{ or } \sqrt{\frac{A \div 4}{\pi}} \text{ or } \sqrt{A \div 4 \div \pi}$		award 1/2	
(iii)	the fi	nal mark is for taking the square root of th	ne given r	2	

Que	estio	n Marking Scheme	Max	Illustrations of evidence for awarding a
		Give 1 mark for each •	Mark	mark at each •
5		150 patients have been given a flu vaccine.The data is shown in the table below.		
		AGEGENDER 5 or under 4 5 or under 4 $6-15$ 7 8 16-59 $16-59$ 37 47 60 or over 12 32 What is the probability that		
	a	a patient given the flu vaccine was male and aged 60 or over? Ans: $\frac{12}{150}$ or equivalent	1	1 12
		• ¹ process	(KU)	• $\frac{12}{150}$
Not	es:		· · · ·	
(i)	Do	o not accept answer in ratio form	I	
5	b	a patient given the flu vaccine was aged 5 or under?		
		Ans: $\frac{7}{150}$	1	
		• ¹ process	(KU)	• ¹ $\frac{7}{150}$
Not	es:			
(i)	an	answer in ratio form in part (b) may be award	led the ma	ark as a follow through error from (a)

Que	estion	Marking Scheme	Max	Illustrations of evidence for awarding a
		Give 1 mark for each •	Mark	mark at each •
6		Joan buys gold and silver charms to make bracelets. 2 gold charms and 5 silver charms cost £125.		
	a	Let <i>g</i> pounds be the cost of one gold charm and <i>s</i> pounds be the cost of one silver charm.		
		Write down an equation in terms of g and s to illustrate the above information.		
		Ans: $2g + 5s = 125$	1	
		• ¹ process	(KU)	$\bullet^1 2g + 5s = 125$
6		4 gold charms and 3 silver charms cost ± 145 .		
	b	Write down another equation in terms of g and s to illustrate this information.		
		Ans: $4g + 3s = 145$	1	
		• ¹ process	(KU)	$\bullet^1 \qquad 4g + 3s = 145$
6	с	Hence calculate the cost of each type of charm.		
		Ans: $g = 25; s = 15$	3	
		• ¹ starting process		• ¹ evidence of scaling
		• ² value of one variable		• ² $g = 25$
		• ³ value of a second variable	(RE)	• ³ $s = 15$
Not	es:	· · · · · · · · · · · · · · · · · · ·		·
(i)	for g	g = 25 and $s = 15$ without working but check	ed in bot	h equations award $1/3$
(ii)	for g	g = 25 and $s = 15$ without working		award 0/3

Que	estion	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •	
7	a	Expand and simplify $(2x-5)(x^2+3x-7)$ Ans: $2x^3 + x^2 - 29x + 35$			
		Ans: $2x + x - 29x + 35$ •1starting to expand•2continuing to process•3collecting like terms	3 (KU)	• ¹ any 3 correct terms • ² a further 3 correct terms • ³ $2x^3 + x^2 - 29x + 35$	
7	b	Solve the inequality $4x-5 \le 7x-20$ Ans: $x \ge 5$ or $5 \le x$ \bullet^1 dealing with variable \bullet^2 dealing with constant \bullet^3 solution	3 (KU)	• ¹ -3x or 3x • ² -15 or 15 • ³ $x \ge 5$ or $5 \le x$	

Question	Marking Scheme	Max	Illustrations of evidence for awarding a
	Give 1 mark for each •	Mark	mark at each •
8	Four straight line graphs are shown below.		
	$\begin{array}{c c} A & y & & & & \\ \hline & y & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$		
	$\begin{array}{c c} C & y & D & y \\ \hline & & & \\ \hline & & \\ \hline & & & \\ \hline \\ \hline$		
	Which one of these above could represent the line with equation 2x + y = 3?		
	Give two reasons to justify your answer.		
	Ans: graph D	3	
	• ¹ re-arranging		• ¹ $y = -2x + 3$
	• ² understanding		• ² m – negative c – positive
	\bullet^3 conclusion	(RE)	\bullet^3 D
Notes:			
i) for a	n answer with no working		award 0/3
	andidates who do not re-arrange, the 1 st m cept are stated	ark can be	e awarded only if the correct gradient and

Question		n Marking Scheme	Max	Illustr	ations of evidence for awarding a
		Give 1 mark for each •	Mark		at each •
9	а	 Quick-Smile photographers charge the following rates: 50p per photograph for the first 12 photographs printed 35p per photograph for any further photographs printed £4.25 for a CD of the photographs. How much will it cost to have 16 photographs printed plus a CD? 			
		 Ans: £11.65 •¹ starting the process 	2	• ¹	either (12×0.5) + 4.25 or $(16 - 12) \times 0.35$
		\bullet^2 calculation	(KU)	• ²	£11.65
(ii)	th	e 2 nd mark may be awarded only for a correc	t calculatio	on invol	lving all 3 rates.
9	b	Find a formula for C, the cost in pounds, of having <i>x</i> photographs printed (where <i>x</i> is greater than 12) plus a CD.			
		Ans: $(c =) 6 + (x-12) 0.35 + 4.25$	3		
		• ¹ starting strategy		\bullet^1	12×0.5
		 •¹ starting strategy •² continuing strategy 		• ¹ • ²	12×0.5 $(x - 12) \times 0.35$
			(RE)		
Note	es:	• ² continuing strategy	(RE)	• ²	$(x-12) \times 0.35$
Note (i)		• ² continuing strategy	(RE)	• ²	$(x-12) \times 0.35$

Que	estio	n	Marking Scheme	Max	Illustrations of evidence for awarding a
	1	1	Give 1 mark for each •	Mark	mark at each •
10			The parabola with equation $y = x^2 - 2x - 3$ cuts the <i>x</i> -axis at the points A and B as shown in the diagram. $y = x^2 - 2x - 3$ A = B = x		
	a		Find the coordinates of A and B.		
			Ans: A(-1,0), B(3,0)	4	
			• ¹ equating to zero		$\bullet^1 \qquad x^2 - 2x - 3 = 0$
			• ² factorising		• ² $(x-3)(x+1) = 0$
			• ³ solving for x		• ³ $x = -1$ or 3
			• ⁴ co-ordinates	(RE)	• ⁴ A(-1,0), B(3,0)
Not	es:				
(i)	ec	quati	ing to zero must appear prior to solving for	r x	
(ii)	fc	or co	rrect coordinates with no working	av	ward 0/4
			-		
(iii)	Ca	andi	dates may draw graph – check page 15 on	answer bo	ooklet
10	b		Write down the equation of the axis of symmetry of $y = x^2 - 2x - 3$.		
			Ans: $x = 1$	1	
			• ¹ calculation	(KU)	• ¹ $x = 1$
Not	es:			(110)	1
			awar of 1 is not sufficient to said the work	r	
(i)	al	i ans	swer of 1 is not sufficient to gain the mar	ĸ	

Qu	estion	Marking Scheme	Max	Illustrations of evidence for awarding a			
	1 1	Give 1 mark for each •	Mark	mark at each •			
11		Jenny is doing calculations using consecutive numbers.					
		She notices a pattern which always gives an answer of 1.					
		Using 2, 3, 4 gives $3^2 - 2 \times 4 = 1$. 3, 4, 5 gives $4^2 - 3 \times 5 = 1$. 4, 5, 6 gives $5^2 - 4 \times 6 = 1$.					
	a	Using 8, 9, 10, write down a similar pattern.					
		Ans: $9^2 - 8 \times 10 = 1$	1				
		• ¹ statement	(KU)	$\bullet^1 \qquad 9^2 - 8 \times 10 = 1$			
Not	es:			1			
(i)	do n	tot accept $9^2 - 8 \times 10$					
11	b	Using n, $(n + 1)$, $(n + 2)$, show that the answer is 1 for any three consecutive numbers.					
		Ans: proof	3				
		• ¹ beginning proof		• ¹ $(n+1)^2 - n (n+2)$ • ² $n^2 + 2n + 1 - n^2 - 2n$			
		\bullet^2 simplification		• ² $n^2 + 2n + 1 - n^2 - 2n$			
		• ³ proof	(RE)	• ³ 1			
Not	tes:			1			
(i)	for t	he 2 nd mark, brackets must be explicitly ex	panded				
			-				
(ii)	the 3	3 rd mark can be awarded only if the 2 nd mar	k has bee	n awarded			

KU 20 RE 18

[END OF PAPER 1 MARKING INSTRUCTIONS]