2500/406

NATIONAL QUALIFICATIONS 2006

FRIDAY, 5 MAY 2.45 PM - 4.05 PM MATHEMATICS STANDARD GRADE Credit Level Paper 2

- 1 You may use a calculator.
- 2 Answer as many questions as you can.
- 3 Full credit will be given only where the solution contains appropriate working.
- 4 Square-ruled paper is provided.

FORMULAE LIST

The roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

Sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule:
$$a^2 = b^2 + c^2 - 2bc \cos A$$
 or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

Area of a triangle: Area =
$$\frac{1}{2}ab \sin C$$

Standard deviation:
$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n - 1}}$$
, where *n* is the sample size.

1.	The orbit of a planet around a star is circular.	KU	RE
	The radius of the orbit is 4.96×10^7 kilometres.		
	Calculate the circumference of the orbit.		
	Give your answer in scientific notation.	3	
2.	(a) The pulse rates, in beats per minute, of 6 adults in a hospital waiting area are:		
	68 73 86 72 82 78.		
	Calculate the mean and standard deviation of this data.	3	
	(b) 6 children in the same waiting area have a mean pulse rate of 89.6 beats per minute and a standard deviation of 5.4.		
	Make two valid comparisons between the children's pulse rates and those of the adults.		2
3.	Harry bids successfully for a painting at an auction. An "auction tax" of 8% is added to his bid price.		
	He pays £324 in total.		
	Calculate his bid price.	3	
	[Turn over		

Page three

[2500/406]

4. (a) Expand and simplify

$$(x+4)(3x-1)$$
.

(b) Expand

$$m^{\frac{1}{2}}(2+m^2).$$

(c) Simplify, leaving your answer as a surd

$$2\sqrt{20}-3\sqrt{5}$$
.

5. ST, a vertical pole 2 metres high, is situated at the corner of a rectangular garden, PQRS.

RS is 8 metres long and QR is 12 metres long.

The pole casts a shadow over the garden.

The shadow reaches M, the midpoint of QR.

Calculate the size of the shaded angle TMS.

4

KU RE

1

2

2

6.	(a)	There are three mooring points A, B and C on Lake Sorling.	KU	RE
		A 174°		
		From A, the bearing of B is 074° .		
		From C, the bearing of B is 310°.		
		Calculate the size of angle ABC.		2
	(<i>b</i>)	B is 230 metres from A and 110 metres from C.		
	(-)	Calculate the direct distance from A to C.		
		Give your answer to 3 significant figures.		4
7.	(a)	A block of copper 18 centimetres long is prism shaped as shown. 28 cm ² 18 cm		
		The area of its cross section is 28 square centimetres. Find the volume of the block.	1	
	(b)	The block is melted down to make a cylindrical cable of diameter 14 millimetres.		
		14 mm		
		Calculate the length of the cable.		4

[2500/406]

 $Page \ five$

[Turn over

8. A set of scales has a circular dial.

The pointer is 9 centimetres long.

The tip of the pointer moves through an arc of 2 centimetres for each 100 grams of weight on the scales.

A parcel, placed on the scales, moves the pointer through an angle of 284°. Calculate the weight of the parcel.

9. The number of diagonals, d, in a polygon of n sides is given by the formula

$$d=\frac{1}{2}n(n-3).$$

- (a) How many diagonals does a polygon of 7 sides have?
- (b) A polygon has 65 diagonals. Show that for this polygon, $n^2-3n-130=0$.
- (c) Hence find the number of sides in this polygon.

KU RE

10. Emma goes on the "Big Eye".

Her height, h metres, above the ground is given by the formula

$$h = -31 \cos t^{\circ} + 33$$

where t is the number of seconds after the start.

- (a) Calculate Emma's height above the ground 20 seconds after the start.
- (b) When will Emma first reach a height of 60 metres above the ground?
- (c) When will she next be at a height of 60 metres above the ground?

[Turn over for Question 11 on Page eight

2

KU RE

1

3

1

3

11. In triangle ABC,

BC = 8 centimetres,

AC = 6 centimetres and

PQ is parallel to BC.

M is the midpoint of AC.

Q lies on AC, x centimetres from M, as shown on the diagram.

- (a) Write down an expression for the length of AQ.
- (b) Show that $PQ = (4 + \frac{4}{3}x)$ centimetres.

[END OF QUESTION PAPER]