

2017 Mathematics Paper 2

National 5

Finalised Marking Instructions

 $\ensuremath{\mathbb{C}}$ Scottish Qualifications Authority 2017

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

Detailed marking instructions for each question

Question		on	Generic scheme	Illustrative scheme	Max mark
1.			Ans: 23		2
			• ¹ start process	• $18^2 + (-14)^2 + 3^2$	
			• ² solution	• ² 23	
Not	es:				
1.	Corre	ct ans	swer without working	award 2	/2
Con	nmon	ly Ob	served Responses:		
No	worki	ng ne	ecessary:		
	$\sqrt{529}$			award 1/2 🗸	x
2.	11.7	.(eg	$\sqrt{324-196+9}=\sqrt{137}\Big)$	award 1/2 ×	✓
	3. $\sqrt{137}$ award 0/2				
4.	4. $2 \cdot 6 \left(\text{eg } \sqrt{18 - 14 + 3} = \sqrt{7} \right)$ award 0/2 award 0/2				

Question		n	Generic scheme	Illustrative scheme	Max mark
2.			Ans: £1369		3
			\bullet^1 know how to increase by 4.5%	• ¹ ×1·045	
			• ² know how to calculate value after three years	• ² 1200×1·045 ³	
			\bullet ³ evaluate to nearest £	• ³ 1369	
Note	es:				
1. C	Correct	t ans	wer without working	award 3/3	
			ncorrect percentage is used, the work of awarding 2/3,	ing must be followed through to give	e the
e	eg for	1200	$\times 1.45^3 = 3658$, with working	award 2/3 ×√	✓
	a) alo	ng w	ion is used, /ith1·045 , • ¹ is not available) ÷1·045 ³ = 1052	award 2/3 ×√	<i>.</i>
	-				•
(-	with an incorrect percentage, \bullet^1 and \bullet^2 $\div 0.955^3 = 1378$	award 1/3 ××	✓
Com	monly	/ Ob	served Responses:		
1. N	o wor	king	necessary:		
•	a) 1369			award 3/3	
(b	b) 1370) or	1369·40 or 1369·4	award 2/3 🗸	√x
2. W	/orkin	g mu	ıst be shown:		
(a	a) 1200)×0	$-955^3 = 1045$	award 2/3 ×	$\checkmark\checkmark$
(b	o) 1200)×0	$045 = 54 \rightarrow 1200 + 3 \times 54 = 1362$	award 1/3 🗸	xx
(c	:) 1200)×1·	045 = 1254	award 1/3 🗸	
``	,		045×3 = 3762	award 1/3 🗸	xx
(e	e) 1200)×0·	$045 \times 3 = 162$	award 0/3	

Question		on	Generic scheme	Illustrative so	cheme	Max mark
3.			Ans: 413m			3
			• ¹ correct substitution into cosine rule	• 1 180 ² + 250 ² - 2 × 180	× 250 × cos147	
			•² evaluate QR²	• ² 170380·3		
			• ³ calculate QR	• ³ 412·77(m)		
Note	es:					
1. C	orrec	t ans	wer without working		award 0/3	
2. <i>A</i>	Accep	t 412	metres with working		award 3/3	
3. W	/here	sine	rule is used		award 0/3	
(a) 180	² + 25	From the second	→412·9…	award 3/3	
(b) 180	r + Z:	$50^2 - 2 \times 180 \times 250 \times (-0.8) = 166900 - 1000$	→408·5	award 3/3	
	a) 40 5) 39		408 (RAD) AD)		award 2/3 ✓ award 2/3 ✓	
Inap	propr	iate	use of RAD or GRAD should only be pe	nalised once in either	Q3, 10 or 15.	
Com	monl	ly Ob	served Responses:			
Wor	king	must	be shown:			
1. 🔨	180 ²	+250	$\overline{0^2} = 308(.05)$		award 1/3 ××	.√
2. (a	2. (a) $180^2 + 250^2 - 2 \times 180 \times 250 \times \cos 147 = 170380 \cdot 0 \dots \rightarrow 410$ award 3/3					
(t	(b) $180^2 + 250^2 - 2 \times 180 \times 250 \times \cos 147 \rightarrow 410$ award 2/3 \checkmark			×√		
3. 3	3. $32400 + 62500 - 75480 \cdot 35 = 19419 \cdot 64 \rightarrow 139(\cdot 35)$ award 2/3 $\checkmark \times$			×√		

Qı	uestion	Generic scheme	Illustrative scheme	Max mark	
4.		Ans: $x = -3 \cdot 1$, $x = 0 \cdot 6$ • ¹ substitute correctly into quadratic formula	$\bullet^1 \frac{-5\pm\sqrt{5^2-4\times2\times(-4)}}{2\times2}$	3	
		• ² evaluate discriminant	• ² 57 (stated or implied by • ³)		
		• ³ calculate both values of <i>x</i> correct to one decimal place	• 3 -3 · 1, 0 · 6		
Note	es:				
1. C	Correct an	swer without working	award 0/3		
2. 1	The final n	nark is only available if $b^2 - 4ac > 0$; se	e CORs 2 - 5		
3. Т	The final n	nark is only available when answer rec	juires rounding		
Com	monly Ob	served Responses:			
1. 5	57 $(b^2 - b^2)$	4ac)	award 1/3 ×√	́х	
	2. $\frac{-5\pm\sqrt{5^2-4\times2\times(-4)}}{2\times2} \rightarrow \frac{-5\pm\sqrt{-7}}{2\times2} \rightarrow -1.9, -0.6$ award 1/3 $\checkmark \times \times$ (Beware: candidate may get $\sqrt{-7}$ then change it to $\sqrt{7}$)				
3. –	$-5\pm\sqrt{5^2-4}$	$\frac{4\times 2\times (-4)}{2} \rightarrow \frac{-5\pm\sqrt{7}}{2\times 2} \rightarrow -1.9, -0.6$	award 2/3 √×	<√	
	4. $\frac{-5\pm\sqrt{5^2-4\times2\times4}}{2\times2} \rightarrow \frac{-5\pm\sqrt{-7}}{2\times2} \rightarrow -1.9, -0.6$ award 1/3 × \checkmark × (Beware: candidate may get $\sqrt{-7}$ then change it to $\sqrt{7}$)				
5. –	$-5\pm\sqrt{5^2-4}$	$\frac{4\times 2\times 4}{2\times 2} \rightarrow \frac{-5\pm\sqrt{7}}{2\times 2} \rightarrow -1.9, -0.6$	award 1/3 ××	√	

Q	uesti	on	Generic scheme	Illustrative scheme	Max mark
5.			Ans: 4200		3
			• ¹ know that $115\% = 4830$	• ¹ 115% = 4830	
			• ² begin valid strategy	• ² 1% = $\frac{4830}{115}$ or equivalent	
			• ³ complete calculation within valid strategy	• ³ 4200	
Not	es:				
1.	For 4	200 v	vith or without working	award 3/3	
2.	For 4	105 o	r 4106 (85% of 4830) or 5554 or 5555 ((115% of 4830)	
	(i)	and	evidence of • ¹	award 1/3 ✓	××
	(ii)	othe	erwise	award 0/3	
Con	nmon	ly Ob	served Responses:		
1	1. $\frac{4830}{1.15} = 4200$ award 3/3				
2. 8	2. $85\% = 4830 \rightarrow 5682$ award $2/3 \times \sqrt{4}$				
3. 1	3. $15\% = 4830 \rightarrow 32200$ award $2/3 \times \sqrt{2}$				

Questi	on	Generic scheme	Illustrative scheme	Max mark		
6.		Ans: 4180mm ³		5		
		 ¹ know to find difference of two volumes 	• ¹ evidence of difference in two volumes			
		• ² substitute correctly into formula for volume of large sphere	• ² $\frac{4}{3} \times \pi \times 12^3 (= 7238 \cdot 229)$			
		• ³ substitute correctly into formula for volume of small sphere	$\bullet^3 \frac{4}{3} \times \pi \times 9^3 (= 3053 \cdot 628 \ldots)$			
		 ⁴ carry out all calculations correctly (must involve difference or sum of two volume calculations and include a fraction) 	• ⁴ 4184·601			
		 ⁵ round final answer to 3 significant figures and correct units 	• ⁵ 4180mm ³			
Notes:						
1. Correc	ct ans	wer without working	award 0/5			
-		ations in π				
eg $\frac{4}{3}$	×3·14	$4 \times 12^{3} - \frac{4}{3} \times 3 \cdot 14 \times 9^{3} = 4182 \cdot 48 = 4180$	mm ³			
• • •	erme	diate calculations need not be shown				
eg	$\frac{4}{3}$ ×	$\pi \times 12^3 - \frac{4}{3} \times \pi \times 9^3 = 4180 \mathrm{mm}^3$	award 5/5			
	Vhere intermediate calculations are shown, they must involve at least four significant igures					
5	eg $7238 \cdot 229 \dots - 3053 \cdot 628 \dots = 7240 - 3050 = 4190 \text{ mm}^3$ award $4/5 \checkmark \checkmark \checkmark \checkmark$					
4. Volum	4. Volume of second sphere may be calculated using volume scale factor					
eg a	ccept	$\left(\frac{3}{4}\right)^3 \times \frac{4}{3} \times \pi \times 12^3$ for the award of • ³				

Question	Generic scheme	Illustrative so	cheme	Max mark					
Commonly Ob	Commonly Observed Responses:								
Working must	be shown:								
1. (a) $\frac{4}{3} \times \pi \times 13$	$2^{3} - \frac{4}{3} \times \pi \times 10 \cdot 5^{3} = (7238 \cdot 4849 \cdot)$	= 2390mm ³	award 4/5 √√	(×√√					
(b) $\frac{4}{3} \times \pi \times 1$	$2^{3} - \frac{4}{3} \times \pi \times 10 \cdot 5^{3} = 7240 - 4850 = 2390$	mm ³	award 3/5 √√	∕ x√ x					
2. $\frac{4}{3} \times \pi \times 12^3$ –	$\frac{4}{3} \times \pi \times 3^3 = 7130 \text{mm}^3$		award 4/5 √√	(×√√					
3. $\frac{4}{3} \times \pi \times 12^3 =$	= 7240 mm ³		award 2/5 ו	′××√					
4. $\frac{4}{3} \times \pi \times 12^3 +$	$\frac{4}{3} \times \pi \times 9^3 = 10300 \text{mm}^3$		award 4/5 ו	/ / 					
5. $\frac{4}{3} \times \pi \times 24^3$ –	$-\frac{4}{3} \times \pi \times 18^3 = 33500 \text{mm}^3$		award 4/5 √›	<√√√					
6. $\frac{4}{3} \times \pi \times 24^3$ –	$-\frac{4}{3} \times \pi \times 21^3 = 19100 \text{ mm}^3$		award 3/5 √›	cx√√					
7. $\frac{4}{3} \times \pi \times 1.5^3$	$=$ 14 \cdot 1mm ³		award 1/5 ××	xx√					
8. $\frac{4}{3} \times \pi \times 12^2 -$	$\frac{4}{3} \times \pi \times 9^2 = 264 \text{mm}^3$		award 4/5 √›	<√√√					
9. $\frac{4}{3} \times \pi \times 12^3 -$	$\frac{4}{3} \times \pi \times 9^3 = 1332 \pi \mathrm{mm}^3$		award 4/5 √√	(√√x					

Q	Question		Generic scheme	Illustrative scheme	Max mark
7.			Ans: No, with valid reason Method 1		3
			 valid strategy (Converse of Pythagoras' Theorem in correct triangle with correct combination of sides) 	• ¹ $8^2 + 19^2$ and 22^2	
			• ² evaluation	• ² $8^2 + 19^2 = 425, 22^2 = 484$	
			• ³ comparison and state conclusion	• ³ $8^2 + 19^2 \neq 22^2$; No	
			Method 2		
			• ¹ valid strategy (Pythagoras' Theorem in correct triangle with correct combination of sides)	$\bullet^1 8^2 + 19^2$	
			• ² evaluation	• ² length of longest side = 20.6	
			• ³ comparison and state conclusion	• ³ 20.6 \neq 22; No	
			Method 3		
			 valid strategy (correct substitution into cosine rule to find largest angle in correct triangle) 	• ¹ $\cos x^{\circ} = \frac{8^2 + 19^2 - 22^2}{2 \times 8 \times 19}$	
			• ² evaluation	$\bullet^2 \cos x^\circ = -0.194$	
			• ³ find angle and state conclusion	• ³ ($x =$) 101·2 ; No	
			Method 4		
			• ¹ valid strategy (correct substitutions into cosine rule to	• $\cos x^{\circ} = \frac{8^2 + 7^2 - 6^2}{2 \times 8 \times 7}$	
			find angle opposite 6 in triangle A and angle opposite 16 in triangle B)	and $\cos y^{\circ} = \frac{7^2 + 19^2 - 16^2}{2 \times 7 \times 19}$	
			• ² evaluation of both cos values	• $^{2}\cos x^{\circ} = 0.6875$ and $\cos y^{\circ} = 0.5789$	
			• ³ find sum of angles and state conclusion	• ³ (sum=)101·2 ; No	

(Question	Generic scheme	Illustrative scheme	Max mark		
No	tes:					
1. 2.	carried out eg $8^2 + 19^2 = 64 + 361$, $22^2 = 484$; $8^2 + 19^2 \neq 22^2$; No $8^2 + 19^2 = 64 + 361 = 425$, $22^2 = 484$; $8^2 + 19^2 \neq 22^2$; No award 3/3					
Со	mmonly Ob	served Responses:				
1.	$8^2 + 19^2 = 6$	$4+361=425,22^2=484$; $8^2+19^2<22^2$; No aware	d 3/3		
2.	$7^2 + 16^2 = 3$	$305,19^2 = 361;7^2 + 16^2 \neq 19^2$; No	aware	d 2/3 ×√√		
3.	$7^2 + 19^2 = 4$	$110,16^2 = 256$; $7^2 + 19^2 \neq 16^2$; No	aware	d 1/3 ××√		
4.	$8^2 + 22^2 = 5$	$548,19^2 = 361;8^2 + 22^2 \neq 19^2$; No	award	d 2/3 ×√√		
5.	equal (b) 8 ² +19	$9^2 = 425,22^2 = 484$; The square of the to the sum of the squares of the othe $9^2 = 425,22^2 = 484$; The hypotenuse i f the squares of the other two sides; N	r two sides; No award s not equal to the	d 3/3 d 2/3 √√×		

Q	Question		Generic scheme	Illustrative scheme	Max mark			
8.	(a)		Ans: d-c		1			
			• ¹ answer	• ¹ d - c or equivalent				
Note	es:							
			dor d+-c Cas bad form					
Corr	nmon	ly Ob	served Responses:					
	(b)		Ans: $\frac{3}{2}\mathbf{d} - \frac{1}{2}\mathbf{c}$		2			
			• ¹ valid pathway	• $\overrightarrow{\mathbf{TP}} + \frac{1}{2}\overrightarrow{\mathbf{PR}}$ or $\overrightarrow{\mathbf{TQ}} + \overrightarrow{\mathbf{QR}} + \frac{1}{2}\overrightarrow{\mathbf{RP}}$				
			• ² correct simplified expression	• ² $\frac{3}{2}$ d - $\frac{1}{2}$ c or equivalent				
Note	es:							
1. C	orrec	t ans	wer without working	award 2/2				
2. A	ccept	$t \frac{3}{2}D$	$-\frac{1}{2}C$					
3. ī	$\vec{\mathbf{P}} + \vec{\mathbf{I}}$	V or	$\overrightarrow{\mathbf{TQ}} + \overrightarrow{\mathbf{QR}} + \overrightarrow{\mathbf{RV}}$ alone is not enough f	or the award of \bullet^1				
			rd of ∙ ¹					
(2	a) acc	ept o	$\mathbf{d} + \frac{1}{2} \overrightarrow{\mathbf{PR}}$ but not $\mathbf{d} + \overrightarrow{\mathbf{PV}}$					
(1	o) aco	cept ($2\mathbf{d} - \mathbf{c} + \frac{1}{2} \overrightarrow{\mathbf{RP}}$ but not $2\mathbf{d} - \mathbf{c} + \overrightarrow{\mathbf{RV}}$					
(0	(c) accept $\overrightarrow{PV} = \frac{1}{2}(\mathbf{d} - \mathbf{c})$ but not $\frac{1}{2}(\mathbf{d} - \mathbf{c})$ alone							
(0	(d) accept $\overrightarrow{\mathbf{RV}} = \frac{1}{2}(\mathbf{c} - \mathbf{d})$ but not $\frac{1}{2}(\mathbf{c} - \mathbf{d})$ alone							
Corr	Commonly Observed Responses:							
1. ¹ / ₂	1. $\frac{1}{2}(3d-c)$ award 2/2							

Question		on	Generic scheme	Illustrative scheme	Max mark		
9.	(a)		Ans: $(2x-5)(2x+5)$		1		
			• ¹ factorise	• $(2x-5)(2x+5)$			
Note	es:						
Com	imon	ly Ob	served Responses:				
	(b)		Ans: $\frac{2x+5}{x+2}$		3		
			• ¹ start to factorise	• $(2x \ 5)(x \ 2)$			
			• ² complete factorising	• $(2x \ 5)(x \ 2)$ • $(2x-5)(x+2)$ • $\frac{2x+5}{2}$			
			• ³ simplify	$\bullet^3 \frac{2x+5}{x+2}$			
Note	es:						
1. (Correc	t ans	wer without working	award 3/3			
2. F	For (2	.x 10	$(x \ 1) \text{ or } (2x \ 2)(x \ 5) \text{ etc}$	award 1/3 🗸	кx		
	3. For subsequent incorrect working, the final mark is not available eg $\frac{2x+5}{x+2} = \frac{7}{3}$ award 2/3 $\checkmark \checkmark \times$						
4. \bullet^3 is only available when both the numerator and denominator have at least two factors							
Commonly Observed Responses:							

Questio	n Generic scheme	Illustrative scheme	Max mark			
10.	Ans: 9.9 kilometres		4			
	• ¹ calculate size of angles DEF and DFE	• ¹ 40 and 104				
	• ² correct substitution into sine rule	$\bullet^2 \frac{DF}{\sin 40} = \frac{15}{\sin 104}$				
	• ³ rearrange formula	$\bullet^3 \frac{15 \times \sin 40}{\sin 104}$				
	● ⁴ calculate DF	• ⁴ 9·9(36)				
Notes:						
1. Correct	answer without working	award 0/4				
2. Accept	a final answer of 10, with working	award 4/4				
3. ● ¹ may b	be awarded for sizes of angles DEF and DF	E marked on the diagram				
(a) w to (b) w	ncorrect sizes are used for angles DEF an ith prior evidence of angle sizes (marked named angles), marks • ² , • ³ and • ⁴ are av ithout prior evidence of angle sizes, only	on diagram or clearly attached ⁄ailable				
(a) w	RE $\frac{\text{DF}}{\sin 40} = \frac{15}{\sin 76} \rightarrow 9.9$ ith prior evidence of DEF = 40 and DFE = 7 ithout prior evidence of sizes of angles D					
6. Disrega	rd errors due to premature rounding prov	ided there is evidence				
(a) –	priate use of RAD or GRAD should only be 34·7 (RAD) ·8 (GRAD)	penalised once in either Q3, 10 or 1	5			
Commonly	v Observed Responses:					
(a) wit	1. $\frac{DF}{\sin 36} = \frac{15}{\sin 90} \rightarrow 8 \cdot 8$ (a) with prior evidence of sizes of angles DEF and DFE marks (b) without prior evidence of sizes of angles DEF and DFE award 2/4 $\times \times \checkmark \checkmark$					
2. $\frac{\text{DF}}{\sin 230}$	2. $\frac{\text{DF}}{\sin 230} = \frac{15}{\sin 126} \rightarrow -14.2$ award 2/4 ××√√					
3. $\frac{\text{DF}}{40} = \frac{1}{10}$	$\frac{5}{04} \rightarrow 5.769$	award 1/4 ✓	***			

Question		on	Generic scheme	Illustrative scheme	Max mark	
11.			Ans: $\frac{3}{5}$ or 0.6		2	
			 ¹ isolate term in y or divide throughout by 5 	• ¹ -5y = -3x or 3x = 5y or or $\frac{3x}{5} - \frac{5y}{5} - \frac{10}{5} = 0$		
			• ² state gradient explicitly	• ² $\frac{3}{5}$ or 0.6		
Note	es:	•				
			swer without working	award 2/2		
2. D	o not	t acce	ept $x = \frac{3}{5}$ or $y = \frac{3}{5}$ for the award of \bullet^2			
3. V (3. Where gradient formula is used with two points which (a) lie on the line $3x-5y+10=0$, award \bullet^1 for correct substitution into gradient formula award \bullet^2 for correct calculation of gradient (b) do not lie on the line $3x-5y+10=0$, award $0/2$					
Com	Commonly Observed Responses:					
1. $\frac{3}{5}$	1. $\frac{3}{5}x$ or $0.6x$ (with working) award $1/2 \checkmark x$					

Question		on	Generic scheme	Illustrative scheme	Max mark		
12.			Ans: $x^{-\frac{1}{3}}$		2		
			• 1 apply $\sqrt[n]{x^m} = x^{\frac{m}{n}}$ • 2 apply $\frac{1}{x^n} = x^{-n}$	• ¹ $\frac{1}{x^{\frac{1}{3}}}$ stated or implied by • ² • ² $x^{-\frac{1}{3}}$			
			• ² apply $\frac{1}{x^n} = x^{-n}$	• ² $x^{-\frac{1}{3}}$			
Note	es:						
1. C	Correc	ct ans	wer without working	award 2/2			
3. V	Vhere	e a nu	for \bullet^1 imber or letter (excluding <i>n</i>) other that	an x is used			
e	eg $a^{-\frac{1}{3}}$ or $8^{-\frac{1}{3}}$ award 1/2						
	п	$e^{-\frac{1}{3}}$		award 0/2			
Com	Commonly Observed Responses:						
1. $n = -\frac{1}{3}$ award 2/2							
2. –	2. $-x^{\frac{1}{3}}$ award 1/2 \checkmark ×				x		
3. <i>x</i>	3. x^{-3} award 1/2 ×						

Question		Generic scheme	Illustrative scheme	Max mark		
13.		Ans: 42.4 centimetres		4		
		 ¹ marshal facts and recognise right-angled triangle 	•1 12			
		• ² consistent Pythagoras statement	• $x^2 = 14^2 - 12^2$			
		• ³ calculation of x	• ³ 7·2			
		• ⁴ find height of the logo	• 4 42 · 4			
Note	es:					
1.	Correct a	nswer without working	award 0/4			
2.	The final adding 28	mark is for doubling the result of a P	ythagoras (or trig.) calculation and	then		
3.	In the ab	sence of a diagram accept $x^2 = 14^2 - 7$	12^2 as evidence for the award of \bullet^1	and • ²		
4.	BEWARE Where a diagram is shown, working must be consistent with the diagram. • ² is not available for an <u>incorrect</u> diagram leading to $x^2 = 14^2 - 12^2$					
5.	Disregard errors due to premature rounding provided there is evidence					
Com	monly Ob	served Responses:				
1.	For $x^2 = 14^2 + 12^2 \rightarrow x = 18 \cdot 4$ height $= 64 \cdot 8 \dots$ or $64 \cdot 9$ (a) working inconsistent with correct diagram(b) working consistent with candidate's diagram(cosine rule may be used to calculate x)(c) no diagramaward $2/4 \times x \sqrt{x}$					
2.	For $x^2 = 24^2 - 14^2 \rightarrow x = 19 \cdot 4$ height = 66 \cdot 9 or 67 (a) working consistent with candidate's diagram award 3/4 $\times \sqrt{\sqrt{2}}$ (b) no diagram or working not consistent with candidate's diagram award 2/4 $\times \times \sqrt{2}$					
3.	For $x^2 = 24^2 + 14^2 \rightarrow x = 27 \cdot 8$ height = 83.5 or 83.6 (a) working consistent with candidate's diagram award 3/4 $\times \sqrt{\sqrt{2}}$ (cosine rule may be used to calculate x) (b) no diagram or working not consistent with candidate's					
	dia	gram	award 2/4 ××√√			

Qı	Question		Generic scheme	Illustrative scheme	Max mark
14.			Ans: 282 [°]		3
			Method 1		
			• ¹ expression for arc length	• 1 $\frac{\text{angle}}{360} \times \pi \times 12.8$	
			• ² know how to find angle	• ² $\frac{31\cdot5\times360}{\pi\times12\cdot8}$	
			• ³ calculate angle	• ³ 282(·)	
			Method 2		
			• ¹ arc length: circumference ratio	• $\frac{31\cdot 5}{\pi \times 12\cdot 8}$ (= 0.78)	
			• ² know how to find angle	$\bullet^2 \frac{31 \cdot 5 \times 360}{\pi \times 12 \cdot 8}$	
			• ³ calculate angle	• ³ 282(·)	
Note	es:				
1. C	Correc	ct ans	wer without working	award 0/3	
	-		ations in π		
3. P	rema	ture	rounding of $\frac{31\cdot 5}{\pi \times 12\cdot 8}$ must be to at lea	ast 2 decimal places	
			ard of \bullet^3 , the calculation must involve ation must include 31.5, π , 360 and th		adius
	5. For subsequent incorrect working, the final mark is not available eg 360-282=78 award 2/3 √√×				
Commonly Observed Responses:					
1. Fo	1. For $\frac{31 \cdot 5 \times 360}{\pi \times 6 \cdot 4} = 564$ award 2/3 * \checkmark \checkmark 2. For $\frac{31 \cdot 5 \times 360}{\pi \times 6 \cdot 4^2} = 88 \cdot 1$ award 2/3 * \checkmark \checkmark				
2. F	or <u>-</u>	$\frac{1\cdot5\times}{\pi\times6\cdot}$	$\frac{360}{4^2} = 88 \cdot 1$	award 2/3	×√√
3. F	or $\frac{3^2}{3}$	$\frac{1\cdot 5}{60} \times 2$	$\pi \times 12 \cdot 8 = 3 \cdot 518$	award 0/3	

Question		on	Generic scheme	Illustrative scheme	Max m ark		
15.	(a)		Ans: 51.5 metres		1		
			• ¹ calculate height	• ¹ 51·5			
Note	es:						
1.	Inap	prop	riate use of RAD or GRAD should only	be penalised once in either Q3, 10 o	r 15		
	(a) (b)		1 (RAD) •5 (GRAD)				
Com	monl	y Ob	served Responses:				
1.	51·5,308·5 award 0.						
	(b)		Ans: 17 metres		1		
			• ¹ calculate minimum height	• ¹ 17			
Note 1.		propi	riate use of RAD or GRAD should only	be penalised once in either Q3, 10 o	r 15		
	 (a) 26 ⋅ 2 (RAD) (b) 18 ⋅ 1 (GRAD) 						
Com	Commonly Observed Responses:						
	(c)		Ans: 24·1° and 335·9°		4		
			 substitute 61 correctly into equation 	• $61 = 40 + 23 \cos x$			
			• ² calculate $\cos x$	• ² $\cos x = \frac{21}{23}$			
			• ³ calculate value of x	• ³ 24(·07)			
			• ⁴ calculate 2^{nd} value of x	• ⁴ 335(·92)			

Question		Generic scheme	Illustrative scheme	Max m ark			
Note	Notes:						
1.	Correct answersaward 1/4 ×××√(a) without workingaward 1/4 ×××√(b) by repeated substitutionaward 1/4 ×××√						
2.	Accept 2	4 and 336 with valid working					
3.	Disregare	d errors due to premature rounding pr	ovided there is evidence				
4.	Do not penalise omission of degree sign throughout the question						
5.	 Inappropriate use of RAD or GRAD should only be penalised once in either Q3, 10 or 15 (a) 0.418,359.5 (RAD) (b) 26.7, 333.3 (GRAD) 						
Com	Commonly Observed Responses:						
1.	61= 40 +	$23\cos x \to 61 = 63\cos x \to \cos x = \frac{61}{63} \to$	$x = 14.5, 345.5$ award 3/4 \checkmark	×√√			
2.	$\cos x = \frac{-2}{6}$	$\frac{2}{0} \rightarrow x = 91.9, 268.1$	award 2/4 ×	×√√			

[END OF MARKING INSTRUCTIONS]