

2016 Mathematics Paper 1 (Non-calculator)

National 5

Finalised Marking Instructions

© Scottish Qualifications Authority 2016

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Detailed Marking Instructions for each question

Question			Ger	neric Scheme	Illustrative Scheme	Max Mark		
1.			Ans: $\begin{pmatrix} -3 \\ -4 \end{pmatrix}$			2		
			• ¹ calculate	$\frac{1}{2}$ p				
			• ² solution		$\bullet^2 \begin{pmatrix} -3 \\ -4 \end{pmatrix}$			
Note		ect an	swer without	working award 2/2		•		
			as bad forn	-				
3. 4.	(-4) 3. Where there are no brackets ie $\begin{bmatrix} -3 \\ -4 \end{bmatrix}$ award 1/2 4. For $\frac{-3}{-4}$ award 1/2 5. Where there is invalid subsequent working \bullet^2 is not available							
	eg av	vard 1	(a) $(-3, -4)$					
			(b) $-3 + (-4)$) = -7				
			(c) $\sqrt{(-3)^2}$ +	$-(-4)^2 = 5$				
		-	served Respo	nses:				
1. (1. $\begin{pmatrix} 4 \\ -6 \end{pmatrix} + \begin{pmatrix} -5 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ -7 \end{pmatrix}$ award 1/2							
2.	2. $\frac{1}{2} \left(\begin{pmatrix} 4 \\ -6 \end{pmatrix} + \begin{pmatrix} -5 \\ -1 \end{pmatrix} \right) = \begin{pmatrix} -0.5 \\ -3.5 \end{pmatrix} \text{ award } 1/2$							
3.	$\begin{pmatrix} 4 \\ -6 \end{pmatrix}$	$+\frac{1}{2}\left(-\frac{1}{2}\right)$		award 1/2				

Question			Generic Scheme	Illustrative Scheme	Max Mark	
2.			Ans: $\frac{13}{28}$		2	
			Method 1			
			• ¹ start the calculation correctly	• $\frac{7}{21} + \frac{6}{21}$		
			• ² consistent answer in simplest form	• $^{2}\frac{13}{28}$		
			Method 2			
			• ¹ start the calculation correctly	• $\frac{3}{12} + \frac{6}{28}$ or equivalent		
			• ² consistent answer in simplest form	• $^{2}\frac{13}{28}$		
Note		ct ans	wer without working award 0/2.			
2. F	inal a	answe	er must be in simplest form eg for $\frac{39}{84}$	award 1/2 √×		
	-		vailable where simplifying is required.			
4.	4. For subsequent incorrect working, \bullet^2 is not available eg for $\frac{13}{28} = 2\frac{2}{28} = 2\frac{1}{14}$ award $1/2 \checkmark \times$					
Com	mon	ly Ob	served Responses:			
1. F	1. For an answer of $\frac{9}{40}$ obtained from					
	(a) Method 1: $\frac{3}{4}\left(\frac{1}{3}+\frac{2}{7}\right) = \frac{3}{4} \times \frac{3}{10} = \frac{9}{40}$ award 0/2					
	(b) <i>N</i>	\etho	d 2: $\frac{3}{12} + \frac{6}{28} = \frac{9}{40}$ awar	rd 1/2 √×		

Que	estion	Generic Scheme	Illustrative Scheme	Max Mark
3.		Ans: 157 cm ²		3
		Method 1		
		• ¹ appropriate fraction	• $\frac{45}{360}$ or equivalent	
		• ² correct substitution into area of sector formula	$\bullet^2 \frac{45}{360} \times 3.14 \times 20^2$	
		• ³ calculate area of sector	• ³ 157 (cm ²)	
		Method 2		
		\bullet^1 appropriate fraction	• $\frac{360}{45}$ or equivalent	
		• ² correct substitution into area of sector formula	• ² 3.14×20 ² ÷ $\frac{360}{45}$	
		• ³ calculate area of sector	• ³ 157 (cm ²)	
Not	-	answer without working award 0/3.		
		$\div 8$ " in working as evidence of $\frac{45}{240}$.		
		360 *× 3·14" in working as evidence of subs	titution into formula.	
Con	nmonly	Observed Responses:		
1.	$\frac{45}{360} \times \pi r$	$x^{2} = 8 \times 3.14 \times 20^{2} = 10048 (cm^{2})$	award 2/3 √√×	
2.	$\frac{360}{45} \times \pi r$	$x^{2} = 8 \times 3.14 \times 20^{2} = 10048 (cm^{2})$	award 2/3 √×√	
3.	$\frac{45}{360} \times 3.$	$14 \times 20^2 \left(= \frac{45}{360} \times 3.14 \times 40 \right) = 15.7 (\text{cm}^2)$	award 2/3 √√×	
4.	$\frac{45}{360} \times 3 \cdot$	$14 \times 40 = 15 \cdot 7 (cm^2)$	award 2/3 √×√	
5.	$\frac{45}{360} \times \pi >$	< 20 ²	award 1/3 √××	
6. 3	8·14×20	$^{2} = 1256(\text{cm}^{2})$	award 0/	

Question		Generic Scheme	Illustrative Scheme	Max Mark
4.	(a)	Ans: $2c + 3d = 9 \cdot 6$		1
		• ¹ construct equation	• ¹ $2c+3d=9\cdot 6$	
Not	es:			
Con	nmonl	y Observed Responses:		
	(b)	Ans: $3c + 4d = 13 \cdot 3$		1
		• ¹ construct equation	• 1 3 <i>c</i> +4 <i>d</i> =13·3	
Not	es:			
Con	nmonl	y Observed Responses:		
	(C)	Ans: A cloak requires 1.5 m ² of material A dress requires 2.2 m ² of material		4
		• ¹ evidence of scaling	• 1 eg $6c + 9d = 28 \cdot 8$ $6c + 8d = 26 \cdot 6$	
		• ² follow a valid strategy through to produce values for <i>c</i> and <i>d</i>	\bullet^2 values for c and d	
		• ³ calculate correct values for c and d	• ³ $c = 1.5$ and $d = 2.2$	
		• ⁴ communicate answers in square metres	• ⁴ cloak 1·5 m ² dress 2·2 m ²	
2. • 3. (Correc ⁴ is nc (a) wh cor bot (b) wh	It answer without working award $0/4$. ot available if either c or d is negative. ere a candidate calculates values for c a nclusion containing the words 'cloak' an th cases ere a candidate only calculates a value f the conclusion contains the word 'cloak'	d 'dress' along with the correct un for either c or d , \bullet^4 can only be away	rded

Question	Generic Scheme	Illustrative Scheme	Max Mark	
5. (a)	Ans: $W = 20A + 40$		3	
	• ¹ gradient	• ¹ $\frac{240}{12}$ or equivalent		
	• ² substitute gradient and a point into $y = mx + c$ or y - b = m(x - a)	• ² $y - 100 = \frac{240}{12}(x - 3)$ or $y - 340 = \frac{240}{12}(x - 15)$ or $100 = \frac{240}{12} \times 3 + c$		
		or $340 = \frac{240}{12} \times 15 + c$		
	• ³ state equation in terms of <i>W</i> and <i>A</i> and in simplest form (remove any brackets and collect constants)	• $^{3}W = 20A + 40$ or equivalent		
2. • ³ is not av eg $W = 20$ 3. Where $\frac{240}{12}$	swer without working award 3/3. vailable for invalid subsequent working $A + 40 \rightarrow W = 2A + 4$ award 2/3 without a simplified incorrectly \bullet^2 is still as $\frac{0}{3} = \frac{20}{3} \rightarrow y - 100 = \frac{20}{3}(x-3) \rightarrow W = 0$	⁄√× vailable		
Commonly Ob	oserved Responses:			
1. $y = 20x + 4$ 2. $y = 20x$	award 1/			
3. $W = \frac{20}{1}A + \frac{1}{1}A$	+ 40 award 2/	3 √√x		
4. $y - 100 = 2$	$0x - 3 \rightarrow W = 20A + 97$ award 2/	3 √×√		
(b)	Ans: 20 × 12 + 40 = 280 kg		1	
	 ¹ calculate weight using equation from part (a) 	• $^{1} 20 \times 12 + 40 = 280$ (kg) stated explicitly		
2. Follow three	ber greater than 10 or a non-intege	able if 12 is multiplied or divided by a r value followed by an addition or		
Commonly Ob	oserved Responses:			

Question			Generic Scheme	Illustrative Scheme	Max Mark
6.			Ans: real and distinct		2
			• ¹ find discriminant	• ¹ 53 $\left[5^2 - 4 \times 7 \times (-1)\right]$	
			• ² state nature of roots	• ² real and distinct (or equivalent)	
Not	es:				
1.	Corre	ct ans	swer without working award 0/2		
2.	25 + 2	$28 \rightarrow$	real and distinct award 2/2		
			= 52 \rightarrow real and distinct award 1	/2 ×√	
4.	Accep	t 're a	al roots'		
			ept 'two distinct roots'		
6.			ard \bullet^2 where conclusion is ambiguous		
	eg 53	\rightarrow ro	pots are real and even award 1/2	√x	
Cor	nmon	ly Ob	served Responses:		
	1. $\frac{-5\pm\sqrt{5^2-4\times7\times(-1)}}{2\times7} = \frac{-5\pm\sqrt{53}}{2\times7}$ award 1/2 \checkmark ×				
	2. –	$3 \rightarrow r$	no real roots aware	1/2 ×√	
	3. –	$3 \rightarrow r$	no roots awar	d 0/2	

Question		n	Generic Scheme	Illustrative Scheme	Max Mark
7.	(a)		Ans: (8, 4, 0)		1
			• ¹ state coordinates of B	• ¹ (8, 4, 0)	
Not 1.		kets I	must be shown.		
Cor	nmor	nly O	bserved Responses:		
	(b)		Ans: 7		3
			• ¹ know how to find AM^2	• 1 3^{2} + 2^{2}	
			\bullet^2 know how to find AV	• $\sqrt{6^2 + (3^2 + 2^2)}$	
			• ³ find length of AV	• ³ 7	
(ð			ow to find AM ²] (b)[know how $(6^2 + 4^2)$ $^{\bullet 1}$ 6^2	w to find VN ²] (c)[know how to fi +2 ² $^{-1}$ $6^2 + 3^2$	nd VP ²]
		-	$\frac{1}{4}(6^{2}+4^{2})$ • ² $\sqrt{3^{2}+6}$ • ³ 7)
	1	n)	$\rightarrow \bullet^2 \sqrt{3^2 + 2^2 + 6^2} \rightarrow \bullet^3 =$	7 award 3/3	
2.		7 2 6	$\rightarrow \sqrt{7^2 + 2^2 + 6^2} = \sqrt{89}$	award 1/3 ×√×	

Questio	n Generic Scheme	Illustrative Scheme	Max Mark
8.	Ans: $x = -\frac{5}{8}$		3
	Method 1 • ¹ multiply throughout by 6	• 1 4x-5=12x	
	• ² rearrange	• 2 -8 <i>x</i> = 5 or -5 = 8 <i>x</i>	
	• ³ solve for x	• $x = -\frac{5}{8}$ or $x = -0.625$	
	Method 2 • ¹ rearrange	• $\frac{4}{3}x = -\frac{5}{6}$	
	• ² start to solve for x	• ² $x = -\frac{5}{6} \times \frac{3}{4}$ or $24x = -15$ or equivalent	
	• ³ solve for x	• ³ $x = -\frac{5}{8}$ or $x = -0.625$	
Notes: 1. Corre	ect answer without working award 0/3		
3. ● ¹ is 4. For t	available for multiplying throughout by an not available for $\frac{4x-5}{6} = 2x, \frac{12x-15}{18} = 2x$ he award of \bullet^3 , the answer must be a nor hly Observed Responses:	x etc.	
9.	Ans: $\frac{2\sqrt{5}}{5}$		
	• ¹ correct substitution		
	• ² consistent answer	$\bullet^2 \frac{2\sqrt{5}}{5}$	
Notes: 1. Corre	ect answer without working award 0/2.		
1. ● ² is	nly Observed Responses: not available where there is invalid subse	equent working	
eg –	$\frac{\sqrt{5}}{5} = 2\sqrt{5}$ award 1/2 $\checkmark \times$		
2. $\frac{2}{\sqrt{x}}$	$\frac{\sqrt{x}}{\sqrt{x}} = \frac{2\sqrt{x}}{x}$ award 1/2 × \checkmark		

Question		ı	Generic Scheme	Illustrative Scheme	Max Mark
10.			Ans:		3
			 ¹ coordinates of turning point correct 	• ¹ (3,1)	
			• ² sketch parabola with minimum turning point consistent with • ¹	 ² parabola with minimum turning point consistent with •¹ 	
			• ³ <i>y</i> -intercept correct	• ³ (0,10) or 10	

Notes:

- 1. Correct answer without working award 3/3.
- Where the coordinates of the turning point are not stated elsewhere, then for a sketch of a parabola with minimum turning point (3,-1), (-3,±1) or (±1,±3) award •² but not •¹. Otherwise •² is only available where the minimum turning point indicated on the sketch is consistent with that stated elsewhere.
- 3. The sketch of the parabola need not meet or cut the *y*-axis for the award of \bullet^2 .
- 4. •² is not available if the parabola has a maximum turning point.
- 5. \bullet^3 is not available if the minimum turning point is on the y-axis.
- 6. Award \bullet^3 where the *y*-intercept is calculated to be at y=10 and is plotted on the diagram at (0,10) but annotated as (10,0). Treat this special case as bad form.

Commonly Observed Responses:

Que	Question		Generic Scheme	Illustrative Scheme	Max Mark	
11.			Ans: $\sin^2 x^\circ$		2	
			 ¹ identify correct trigonometric identity to be used 	• $\frac{\sin x}{\cos x}$ or $\frac{\sin^2 x}{\cos^2 x}$		
			• ² use correct trigonometric identity to simplify expression	• ² $\frac{\sin^2 x}{\cos^2 x} \times \cos^2 x = \sin^2 x$		
Not	es:					
			hout working award 0/2 gns are not required			
			vailable if there is invalid subsequent	working		
	eg (a	a) <u>si</u>	$\frac{\sin^2 x}{\cos^2 x} \times \cos^2 x = \sin^2 x = 1 - \cos x \text{awarc}$	1/2 √×		
			$\frac{\sin^2 x}{\cos^2 x} \times \cos^2 x = \sin^2 x = 1 - \cos^2 x \text{ award}$			
4.	• ¹ is r	not a	vailable if there are no variables e.g.	$\frac{\sin^2}{\cos^2} \times \cos^2 = \sin^2 \text{ award } 1/2 \times \checkmark$		
5.	• ¹ is r	not a	vailable if candidate simply states tar	$hx = \frac{\sin x}{\cos x}$ and $\sin^2 x + \cos^2 x = 1$ then	n	
	proce	eds	no further	COS X		
6.	Alteri	nativ	e acceptable strategies			
	(a)•1	tan	$x \cos x = \sin x$	(b) $\bullet^1 \left(\frac{o}{a}\right)^2 \left(\frac{a}{h}\right)^2$		
	• ² $\tan^2 x \cos^2 x = \sin^2 x$ • ² $\frac{o^2 a^2}{a^2 h^2} = \frac{o^2}{h^2} = \sin^2 x$					
	award 2/2 award 2/2					
Con	Commonly Observed Responses:					
	$\cos^2 x$ $\cos^4 x$					
	$\sin^2 x$	- × CO	$s^2 x = \frac{\cos x}{\sin^2 x}$ award	U/ Z		
2. t	$an^2 x$	(1 - s)	$in^2 x$) = $tan^2 x - tan^2 x sin^2 x$ award	0/2		

Qu	Question		Generic Scheme	Illustrative Scheme	Max Mark		
12.	(a)		 Ans: (2x+1)(x+8) ¹ find an expression for the area of the rectangle 	¹ $(2x+1)(x+8)$ or equivalent	1		
Notes: 1. If solution to (a) appears in (b) or (c) award 1/1 2. (a) Accept $(2x+1) \times (x+8)$, $2x+1 \times x+8$							

(b) Do not accept 2x+1(x+8), x+8(2x+1) unless correct expansion appears in (a) (b) or (c)

Commonly Observed Responses:

12.	(b)	Ans: proof		3		
		• ¹ find expanded expression for area of the rectangle	• ¹ $2x^2$ + 16 <i>x</i> + <i>x</i> + 8			
		• ² find expanded expression for area of the triangle	• ² $3x^2 + 15x$			
		• ³ equate expanded expressions and rearrange into required form	• ³ $2x^2 + 16x + x + 8 = 3x^2 + 15x$ $\Rightarrow x^2 - 2x - 8 = 0$			
Notes: 1. If solution to (b) appears in (a) or (c) then all three marks are available						

Commonly Observed Responses:

Question	Generic Scheme	Illustrative Scheme	Max Mark
12. (c)	Ans: 12 cm and 9 cm • ¹ factorise $x^2 - 2x - 8$ • ² solve equation • ³ reject invalid value of x and	• $(x-4)(x+2)$ • $x=4$ and $x=-2$ • 3 12 (cm) and 9 (cm)	3
state length and breadth of rectangleNotes:1. Correct answer without working award 0/3.2. If solution to (c) appears in (a) or (b) then all three marks are available.3. \bullet^1 is available for $\frac{2 \pm \sqrt{(-2)^2 - 4 \times 1 \times (-8)}}{2 - 4 \times 1 \times (-8)}$			

4. For an answer obtained by guess and check award 0/3

Commonly Observed Responses:

1.(a)
$$(2x+1)(x+8) = 0 \rightarrow x = -\frac{1}{2}$$
 and $x = -8$ award 1/3 × \checkmark ×

(b) $x = -\frac{1}{2}$ and x = -8 without factorised quadratic equation stated award 0/3

[END OF MARKING INSTRUCTIONS]