

The Equation of a Straight Line

The equation of any straight line is linked to the gradient of the line, and the *y*-intercept of the line:

- In the expressions and formulae unit, it is explained how to work out the gradient of a straight line. For example, it is shown that the gradient of the line on the right is ¹/₂ (see page 26).
- **Definition:** the *y*-intercept of a straight line is the number on the *y*-axis that the line passes through. For
 - ^{*} line on the right, the *y*-intercept is 3.

Formula

The equation of any straight line can be written y = mx + c, where *m* is the gradient of the line and *c* is the *y*-intercept of the line.

In everyday language, this means that:

- the gradient is "the number before x"
- the y-intercept is "the number that is not before x"

Examples 1

Equation	Gradient	y-intercept
y = 2x - 5	2	-5
y=8-x	-1	8
y = 4 - 3x	-3	4
$y = 3 + \frac{5}{2}x$	<u>5</u> 2	3

Example 2

What is the equation of the straight line shown at the top of the page?

Solution

The line has gradient $\frac{1}{2}$ and y-intercept 3. Therefore it has equation $y = \frac{1}{2}x + 3$

Another method for calculating the equation of a straight line from a diagram or sketch is shown on page 35.

The equation of the line must begin y = ... (that is, y has to be the subject of the equation). If it does not, the equation must be rearranged so that y is the subject.

Example 3 Find the gradient and y-intercept of the straight lines (a) 3y = 6x - 9 (b) x + y = 5 (c) 4y - 8x = 4

Solution

(a) In the equation given, 3*y* is the subject. To make *y* the subject, we divide through by 3:

3y = 6x - 9 y = 2x - 3Therefore the gradient is 2 and the y-intercept is -3.

(b) In the equation given, x + y is the subject. To make y the subject, we move x to the opposite side: x + y = 5

y = 5 - xTherefore the gradient is -1 and the <u>y-intercept is 5</u>.

(c) For this equation, we must move the x term across, and divide through by 4. It does not matter which order we do this in. 4y-8x=4

4y = 8x + 4 (moving -8x across to become +8x)

y = 2x + 1 (dividing through by 4)

Therefore the gradient is 2 and the y-intercept is 1.

Drawing a Straight Line from its equation

You need to know how to draw or sketch a line when given its equation. At National 4, you used a table of values to draw a straight line. You can still do this. However there is a quicker way that involves a knowledge of y = mx + c.

Example 1 – Drawing accurately Draw the line y = 2x - 5

<u>Step 1</u> – the y-intercept is -5, so the line goes through (0, -5). Plot this point.

<u>Step 2</u> – the gradient is 2, so move **'along 1 up 2'**. Do this a few times to obtain four or five points.

Step 3 - draw and label the line.

Example 2 – Drawing accurately, fraction gradient Draw the line $y = \frac{3}{4}x + 1$

<u>Step 1</u> – the y-intercept is 1, so the line goes through (0,1). Plot this point.

<u>Step 2</u> – the gradient is $\frac{3}{4}$. This means that you go **'along 4 up 3'** from your first point. Do this a few times to obtain four or five points.

Step 3 - draw and label the line.

Equation of a graph from a diagram

To find the equation of a straight line from a diagram, you have a choice of two formulae. Which one you use depends on whether or not you are told the *y*-intercept:

- If you are told the y-intercept, you can use the formula y = mx + c.
- If you are not told the y-intercept, there is a second formula y b = m(x a)

Example 1 – where the y intercept is given

Find the equation of the straight line in this diagram.

Solution

IMPORTANT – show your working to get all the marks. <u>Do not rush straight to step 3</u>.

<u>Step 1</u> – write down the *y*-intercept: c = -2

<u>Step 2</u> - calculate the gradient of the line.

Two points on the line are (0,-2) and (1,1). Using the method from page 26:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - (-2)}{1 - 0} = \frac{3}{1} = 3$$

(you may be able to spot this from the diagram without working. This is OK so long as you clearly write down what the gradient is)

<u>Step 3</u> – put these values into y = mx + c

Answer: y = 3x - 2

Formula. This formula <u>is not given</u> on the National 5 Mathematics exam paper. The equation of the line with gradient *m* that goes through the point (a, b) is given by: y-b=m(x-a)

The only exception is when *m* is undefined, when the equation of the line is of the form x = aThis formula will give the same final answer (once simplified) no matter which point on the line is used.

Example 2 - no y intercept given

Find the equation of the line with gradient 4 that goes through the point (5, -1). Rearrange your line into the form y = mx + c

Solution

Using m = 4 and (a, b) = (5, -1), we have: y - b = m(x - a) y - (-1) = 4(x - 5) y + 1 = 4x - 20 (multiplying out the bracket) y = 4x - 20 - 1 (moving the +1 over to the right-hand side) y = 4x - 21 (rearranging into the form y = mx + c)

Example 3 - from coordinates

- (a) Find the equation of the straight line AB that goes through the points A(1, -1) and B(3, 5) in the form y = mx + c
- (b) Hence state the y-intercept of the line AB

Solution

(a) First, find the gradient.

$$m_{AB} = \frac{5 - (-1)}{3 - 1} = \frac{6}{2} = 3$$

Then using the formula y - b = m(x - a), with m = 3 and the point (3, 5) [this is a random choice, we could just have easily used (1, -1)], we obtain:

$$y-b = m(x-a)$$

$$y-5 = 3(x-3)$$

$$y-5 = 3x-9$$

$$y = 3x-9+5$$
 (moving - 5 over)

$$y = 3x-4$$
 (simplifying)

(b) Using the answer from part (a), the y-intercept is -4.

Exercise 1

- 1. For each line, write down the gradient and the coordinates of the point where it crosses the y axis.
 - a) y = 3x + 1 (b) $y = \frac{1}{2}x 5$ (c) y = -2x + 3d) $y = -\frac{1}{4}x - 2$ (e) $y = 8x - \frac{1}{2}$ (f) y = -x + 4

2. Match these equations with the graphs shown below.

1.y = x + 12.y = -2x - 33. $y = \frac{1}{2}x + 4$ 4. $y = -\frac{1}{4}x + 2$ 5.y = 6x - 26.y = 3x - 5

Exercise 2

- 1. Sketch the graphs of lines with equations:
 - **a)** $y = \frac{1}{2}x 2$ (**b**) y = -2x 1 (**c**) y = -3x + 2
 - **d**) y = -x + 3 (e) y = 2x + 3 (f) y = 4x + 1

Exercise 3

1. Write down the equation of the lines drawn in the diagrams below.

Exercise 4

1. Identify the gradient and *y* – intercept of these lines.

a)	y = x + 3	(b)	y = -2x - 1	(c)	$y = \frac{1}{2}x$
d)	$y = -\frac{1}{2}x + 2$	(e)	x + y = 6	(f)	2y = x - 4
g)	3y = x + 12	(h)	4x + 5y = 20	(i)	3x - 2y = 12

2. State the gradient and the *y* – intercept for each line below.

a)
$$y = x - 7$$
 (**b**) $y = -5x + 3$ (**c**) $5y = 3x - 10$

d)
$$y = -4x$$
 (e) $2x + y = 11$ (f) $2y = x - 5$

g) 3y - x = 18 (**h**) 3x + 7y - 21 = 0 (**i**) 4x - 5y = 20

3. Write down the equation of the lines described below:

- a) with gradient 4, passing through the point (0, 5)
- **b**) with gradient -2, passing through the point (0, 1)
- c) with gradient $\frac{3}{4}$, passing through the point (0, -3)
- **d**) with gradient 4, passing through the point (3, 1)
- e) with gradient -5, passing through the point (-3, 1)
- **f**) with gradient $\frac{1}{2}$, passing through the point (-5, -2)
- **g**) with gradient $\frac{4}{3}$, passing through the point (2, 7)
- **h**) with gradient $-\frac{3}{4}$, passing through the point (-2, -2)
- i) with gradient $-\frac{3}{2}$, passing through the point (-5, 3)
- 4. Find the equation of the line joining each pair of points below.

a)	A(4, 3) and B(8, 11)	(b)	C(1, 9) and D(3, 1)	(c)	E(-2, 6) and F(8, 8)
d)	G(5, -9) and H(8, -15)	(e)	I(0, 6) and J(5, 11)	(f)	K(-1, -3) and L(7, -9)
g)	M(-4, 0) and N(-1, 5)	(h)	P(2, 2) and Q(-3, 4)	(i)	R(5, -1) and S(-2, 10)

5. Find the equations of the lines joining the following pairs of points:

a)	(2, 1) and (6, 3)	(b) (1, 5) and (3, 1)	(c) (2, 0) and (4, 6)
d)	(-2, -3) and (2, 3)	(e) (-1, 2) and (5, -1)	(f) $(-4, 2)$ and $(4, -4)$
g)	(-6, -2) and (-5, 3)	(h) (4, −3) and (6, 5)	(i) (-2, 3) and (0, -2)

6. Establish the equation of the line passing through each pair of points below.

- **a)** A(2, 1) and B(6, 13) (**b**) C(3, 4) and D(5, -4) (**c**) E(-2, -1) and F(6, 3)
- **d**) G(4, -13) and H(-2, -1) (**e**) I(2, 8) and J(10, 12) (**f**) K(-3, 2) and L(9, -2)

Mixed Exercise

- 1. A straight line has the equation 3x 2y = -4. Find the gradient and *y*-intercept of the line.
- 2. The line AB passes through the points (0, 6) and (8, 0) as shown in the diagram.

Find the equation of the line AB.

3. A straight line has equation 2y + 3x = 8.

Which line of these gives its gradient and y – intercept? Show working to explain your answer.

- **A.** 3 and (0, 8) **B.** 3 and (0. 8)
- **C.** $\frac{3}{2}$ and (0, 4) **D.** $-\frac{3}{2}$ and (0, 4)

4. Find the gradient and y – intercept of the straight line with equation

$$3x - 4y = 12$$
.

5. The diagram below shows the line with equation 3y = x + 12.

Find the coordinates of **P**, the point where the line cuts the *y*-axis.

6. Find the equation of the line shown in the diagram below.

7. A line has equation 2y + 6x = 9. Find its gradient and y - intercept.

- 8. A line has equation 3y + 4x = 15. Make a sketch of this line on plain paper showing clearly where it crosses the y - axis.
- 9. The relationship between variables v and T produces a straight line graph as shown below. The line passes through the point P(24,16) as shown.

- **a**) Find the gradient of the line.
- **b**) Hence, write down the equation of the line in terms of *v* and *T*.
- 10. A straight line has equation 3y 2x = 6. Find the gradient and y-intercept of the line.
- 11. A straight line has equation 3x 2y = 8. Find the gradient and y-intercept of the line.
- 12. Find the equation of the straight line which passes through the point A(3, -2) and is parallel to the line 3y 2x = 5
- **13.** a) A straight line has equation 4y 3x = 6. State the gradient and the *y*-intercept point for this line.
 - **b**) Write down the equation of the line with gradient $-\frac{1}{2}$ which has the same y intercept point as the line above.
- 14. a) A straight line has equation 3y 4x = 12. State the gradient and the *y*-intercept point for this line.
 - **b**) Write down the equation of the line with gradient $-\frac{3}{4}$ which has the same y intercept point as the line above.

Answers

Exercise 1

2.	1 an	nd (b)	2 and (d)	3 and	l (f)	4 and (c) 5 an	d (a)	6 and (e)
	d)	- ¹ /4; (0,	- 2)	(e)	8; (0,	- ½)	(1	f) –	-1; (0, 4)
1.	a)	3; (0, 1)	1	(b)	¹ ⁄2; (0,	- 5)	(c) –	-2; (0, 3)

Exercise 2

Sketches

Exercise 3

1. a) y = 2x + 2 (b) $y = \frac{1}{2}x - 1$ (c) y = 4x - 2 (d) y = 3x + 3(e) $y = -\frac{1}{3}x - 1$ (f) $y = -\frac{1}{2}x + 3$ (g) y = -3x - 3 (h) $y = \frac{1}{4}x - 2 \cdot 5$

Exercise 4

- **1.** a) 1; (0, 3) (b) -2; (0, -1) (c) $\frac{1}{2}$; (0, 0)
 - **d**) $-\frac{1}{2}$; (0, 2) (e) -1; (0, 6) (f) $\frac{1}{2}$; (0, -2)
 - **g**) $\frac{1}{3}$;(0, 4) (**h**) $-\frac{4}{5}$;(0, 4) (**i**) $\frac{3}{2}$;(0, -6)

2.	a)	1; (0,-7)	(b)	-5; (0,3)	(c)	$\frac{3}{5};(0,-2)$
	d)	-4; (0,0)	(e)	-2;(0,11)	(f)	$\frac{1}{2};(0,-\frac{5}{2})$
	g)	$\frac{1}{3}$;(0, 6)	(h)	$-\frac{3}{7};(0,3)$	(i)	$\frac{4}{5};(0,-4)$
3.	a)	y = 4x + 5	(b)	y = -2x + 1	(c)	$y = \frac{3}{4}x - 3$
	d)	y = 4x - 11	(e)	y = -5x - 14	(f)	2y - x = 1
	g)	3y - 4x = 13	(h)	3x + 4y = -14	(i)	2x + 3y = -9
4.	a)	y = 2x - 5	(b)	y + 4x = 13	(c)	5y = x + 32
	d)	y = 2x - 1	(e)	y = x + 6	(f)	4x + 3y = -15
	g)	3y - 5x = 20	(h)	2x + 5y = 14	(i)	7y + 11x = 48
5.	a)	2y - x = 0	(b)	y + 2x = 7	(c)	y = 3x - 6
	d)	2x - 3y = 0	(e)	2y + x = 3	(f)	4y + 3x = -4
	g)	y = 5x + 28	(h)	y = 4x - 19	(i)	2y + 5x = -4
6.	a)	y = 3x - 5	(b)	y + 4x = 16	(c)	2y - x = 0
	d)	y + 2x = -5	(e)	2y - x = 14	(f)	3y + x = 3

Mixerd Exercise

- 1. $\frac{3}{2}$; (0,2)
- 2. $y = -\frac{3}{4}x + 6$
- **3.** D
- 4. $\frac{3}{4}$; (0,3)

5. P(0, 4)6. $y = -\frac{3}{2}x + 2$ 7. $-3; (0, 4 \cdot 5)$ 8. Line crossing at (0, 5) with gradient $-\frac{4}{3}$ 9. (a) $\frac{1}{4}$ (b) $T = \frac{1}{4}v + 10$ 10. $\frac{2}{3}; (0, 2)$ 11. $\frac{3}{2}; (0, -4)$ 12. 3y - 2x = -1213. (a) $\frac{3}{4}; (0, 1 \cdot 5)$ (b) 2y + x = 314. (a) $\frac{4}{3}; (0, 4)$ (b) 4y + 3x = 16