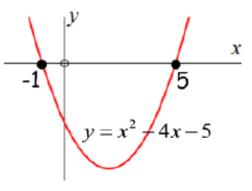
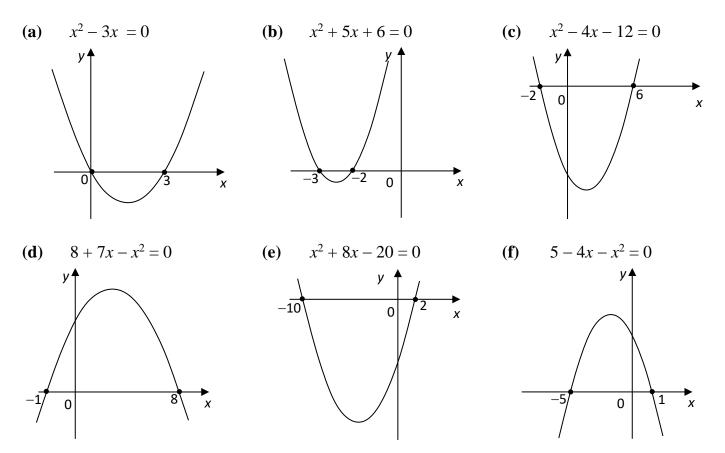
Solving Quadratics Relationships SPTA Mathematics - Topic Questions with Notes


Definition: the **roots** of a quadratic equation are another word for its solutions. The roots of a graph of an equation are the points that the graph crosses the *x*-axis.

Example 1 – from a graph

Using the graph shown, write down the two solutions of the equation $x^2 - 4x - 5 = 0$


Solution

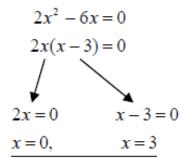
The roots are x = -1 and x = 5.

Exercise 1

1. Use the sketches below to solve the quadratic equations.

Factorising is the simplest way of solving a quadratic equation, but you can only use it when the expression can actually be factorised! See page 15 for help on factorising.

Important – you <u>must</u> rearrange the equation so that is has '= 0' on the right-hand side. If you do not do this, you will risk losing <u>all</u> of the marks.


Example 2 - factorising Use factorising to solve the equation $2x^2 - 6x = 0$

Solution

Step 1 – check that the equation has '= 0' on the right-hand side. On this occasion, it does, so we do not need to do anything more.

<u>Step 2</u> – factorise the expression

Step 3 - split up into two separate equations and solve

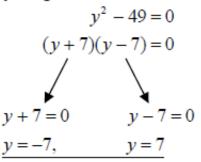
Exercise 2

1. Solve these quadratic equations by factorising first.

(a)	$x^2 + 4x = 0$	(b)	$c^2 - 2c = 0$	(c)	$y^2 + 8y = 0$
(d)	$p^2 - p = 0$	(e)	$z^2 + z = 0$	(f)	$n^2 + 7n = 0$
(g)	$2t^2 + 4t = 0$	(h)	$5x^2 - 20x = 0$	(i)	$6b^2 - 18b = 0$
(j)	$4y^2 - 6y = 0$	(k)	$6a^2 + 9a = 0$	(1)	$14x^2 + 21x = 0$

- (m) $5x x^2 = 0$ (n) $9b b^2 = 0$ (o) $2m m^2 = 0$
- (**p**) $6w 4w^2 = 0$ (**q**) $9c 12c^2 = 0$ (**r**) $4y 10y^2 = 0$

Example 3 - Difference of Two Squares


Use factorising to solve the equation $y^2 - 49 = 0$

Solution

<u>Step 1</u> – check that the equation has '= 0' on the right-hand side. On this occasion, it does, so we do not need to do anything more.

<u>Step 2</u> – factorise the expression

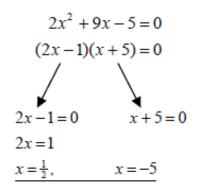
Step 3 - split up into two separate equations and solve

Exercise 3

1. Solve these quadratic equations by factorising first.

(a)	$x^2 - 25 = 0$	(b)	$b^2 - 1 = 0$	(c)	$y^2 - 4 = 0$
(d)	$a^2 - 36 = 0$	(e)	$z^2 - 9 = 0$	(f)	$k^2 - 64 = 0$
(g)	$x^2 - 16 = 0$	(h)	$p^2 - 144 = 0$	(i)	$m^2 - 100 = 0$
(j)	$t^2 - 49 = 0$	(k)	$a^2 - 81 = 0$	(l)	$s^2 - 121 = 0$
(m)	$2a^2 - 18 = 0$	(n)	$5c^2 - 80 = 0$	(0)	$4y^2 - 64 = 0$

Example 4 – factorising with a coefficient of x^2


Use factorising to solve the equation $2x^2 + 9x - 5 = 0$

Solution

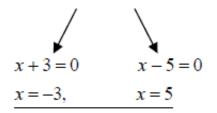
<u>Step 1</u> – check that the equation has '= 0' on the right-hand side. On this occasion it does, so we do not need to do anything more.

Step 2 - factorise the expression

Step 3 - split up into two separate equations and solve

Example 5 – right-hand side is not equal to zero)

Use factorising to solve the equation $x^2 - 2x - 10 = 5$


Solution

Step 1– check that the equation has '= 0' on the right-hand side.It does not, so we need to rearrange $x^2 - 2x - 10 = 5$ by moving the 5 over to the left hand side. $x^2 - 2x - 10 = 5$

 $x^2 - 2x - 15 = 0$

Step 2 – factorise the rearranged expression $x^2 - 2x - 15 = 0$ (x+3)(x-5) = 0

Step 3 - split up into two separate equations and solve

Exercise 4

1. Solve these quadratic equations by factorising first.

$x^2 + 4x + 3 = 0$	(b)	$y^2 + 6y + 5 = 0$	(c)	$a^2 + 8a + 7 = 0$
$m^2 + 5m + 6 = 0$	(e)	$c^2 + 6c + 8 = 0$	(f)	$z^2 + 7z + 12 = 0$
$15 - 2x - x^2 = 0$	(h)	$b^2 - 8b + 16 = 0$	(i)	$x^2 - 7x + 10 = 0$
$w^2 - 12w + 27 = 0$	(k)	$18 + 7y - y^2 = 0$	(l)	$k^2 - 10k + 24 = 0$
$8 - 2x - x^2 = 0$	(n)	$6+m-m^2=0$	(0)	$t^2 - 7t - 30 = 0$
$a^2 + 5a - 14 = 0$	(q)	$c^2 - 2c - 15 = 0$	(r)	$12 - 4p - p^2 = 0$
	$m^{2} + 5m + 6 = 0$ $15 - 2x - x^{2} = 0$ $w^{2} - 12w + 27 = 0$ $8 - 2x - x^{2} = 0$	$m^{2} + 5m + 6 = 0$ (e) $15 - 2x - x^{2} = 0$ (h) $w^{2} - 12w + 27 = 0$ (k) $8 - 2x - x^{2} = 0$ (n)	$m^{2} + 5m + 6 = 0$ (e) $c^{2} + 6c + 8 = 0$ $15 - 2x - x^{2} = 0$ (h) $b^{2} - 8b + 16 = 0$ $w^{2} - 12w + 27 = 0$ (k) $18 + 7y - y^{2} = 0$ $8 - 2x - x^{2} = 0$ (n) $6 + m - m^{2} = 0$	$x^{2} + 4x + 3 = 0$ (b) $y^{2} + 6y + 5 = 0$ (c) $m^{2} + 5m + 6 = 0$ (e) $c^{2} + 6c + 8 = 0$ (f) $15 - 2x - x^{2} = 0$ (h) $b^{2} - 8b + 16 = 0$ (i) $w^{2} - 12w + 27 = 0$ (k) $18 + 7y - y^{2} = 0$ (l) $8 - 2x - x^{2} = 0$ (n) $6 + m - m^{2} = 0$ (o) $a^{2} + 5a - 14 = 0$ (q) $c^{2} - 2c - 15 = 0$ (r)

2. Solve these quadratic equations by factorising first.

(a)	$2x^2 + 7x + 5 = 0$	(b)	$2p^2 + 11p + 5 = 0$	(c)	$3t^2 + 10t + 3 = 0$
(d)	$3k^2 + 7k + 2 = 0$	(e)	$3y^2 + 8y + 5 = 0$	(f)	$6 - 7a - 5a^2 = 0$
(g)	$3 - 5w - 2w^2 = 0$	(h)	$3d^2 - 5d + 2 = 0$	(i)	$5x^2 - 16x + 3 = 0$
(j)	$3m^2 - 14m + 8 = 0$	(k)	$7 + 5c - 2c^2 = 0$	(l)	$1 - 5y - 6y^2 = 0$
(m)	$3x^2 - 2x = 1$	(n)	$4q^2 + 5q = 6$	(0)	4t(t-1) - 3 = 0
(p)	$3m^2 + 2m = 5$	(q)	$36v^2 = -v + 2$	(r)	$7s^2 = 4 + 27s$

Answers

Exercise 1

1.	a)	x = 0 or 3	(b)	x = -3 or -2 (c)	x = -2 or 6	(d)	x = -1 or 8
	e)	x = -10 or 2	(f)	x = -5 or 1			

Exercise 2

1.	a)	0 and –4	(b)	0 and 2	(c)	0 and -8	(d)	0 and 1
	e)	0 and -1	(f)	0 and -7	(g)	0 and -2	(h)	0 and 4
	i)	0 and 3	(j)	0 and $\frac{3}{2}$	(k)	0 or $-\frac{3}{2}$	(1)	0 or $-\frac{3}{2}$
	m)	0 and 5	(n)	0 and 9	(0)	0 and 2	(p)	0 and $\frac{3}{2}$
	q)	0 and $\frac{3}{4}$	(r)	0 and $\frac{2}{5}$				

Exercise 3

1.	a)	-5 and 5	(b)	-1 and 1	(c)	-2 and 2	(d)	-6 and 6
	e)	-3 and 3	(f)	-8 and 8	(g)	-4 and 4	(h)	-12 and 12
	i)	-10 and 10	(j)	-7 and 7	(k)	-9 and 9	(l)	-11 and 11
	m)	-3 and 3	(n)	-4 and 4	(0)	-4 and 4		

Exercise 4

1.	a)	-3 and -1	(b)	-5 and -1	(c)	-7 and -1	(d)	-3 and -2
	e)	-4 and -2	(f)	-3 and -4	(g)	-5 and 3	(h)	4 (twice)
	i)	5 and 2	(j)	3 and 9	(k)	9 and –2	(l)	4 and 6
	m)	-4 and 2	(n)	-2 and 3	(0)	-3 and 10	(p)	-7 and 2
	q)	-3 and 5	(r)	-6 and 2				

2. a)
$$-\frac{5}{2}$$
 and -1 (b) $-\frac{1}{2}$ and -5 (c) $-\frac{1}{3}$ and -3 (d) $-\frac{1}{3}$ and -2
e) $-\frac{5}{3}$ and -1 (f) $\frac{3}{5}$ and -2 (g) $\frac{1}{2}$ and -3 (h) $\frac{2}{3}$ and 1
i) $\frac{1}{5}$ and 3 (j) $\frac{2}{3}$ and 4 (k) $\frac{7}{2}$ and -1 (l) $\frac{1}{6}$ and -1
m) $-\frac{1}{3}$ and 1 (n) $\frac{3}{4}$ and -2 (o) $-\frac{1}{2}$ and $\frac{3}{2}$ (p) $-\frac{5}{3}$ and 1
q) $\frac{2}{9}$ and $-\frac{1}{4}$ (r) $-\frac{1}{7}$ and 4