

Graphs of Quadratics

Definition: the graph of a quadratic function is called a parabola.

The graph on the right is the basic graph of $y = x^2$. You should know its shape.

If x^2 is positive, the graph is "happy" (it has a **minimum** turning point)

If x^2 is negative, then the graph is "unhappy" (it has a **maximum** turning point)

The coordinates of any point on a graph tells you a value for x and y.

e.g. for the coordinate point
$$(3, 7)$$
, $x = 3$ and $y = 7$

e.g. for the coordinate point
$$(0, 5)$$
, $x = 0$ and $y = 5$

e.g. for the coordinate point
$$(-4, 1)$$
, $x = -4$ and $y = 1$

These values can be put back into the equation of the graph. If you don't know the full equation of a graph, they can give you an equation to solve to complete it.

Example

The graph on the right has the equation $y = kx^2$. The graph passes through the point (3, 36). Find the value of k.

Solution

A point on the graph is (3, 36). This means that x = 3 and y = 36.

Substituting these values into the equation gives:

$$v = kx^2$$

$$36 = k \times 3^2$$

$$36 = k \times 9$$

$$k = 4$$

Exercise 1

Write down the equation of the graphs shown below, which have the form $y = kx^2$. 1.

a)

(b)

(c)

g)

j)

m)

(n)

(o)

The graph of $y = (x - a)^2 + b$ is still a parabola, but it has been moved so that its minimum point is no longer at (0, 0):

- The number inside the bracket (a) tells us how far the graph has been moved left or right. If a is positive, the graph moved to the left. If it is negative, it moved to the right.
- The number outside the bracket (b) tells us how far the graph has been moved up or down. If b is positive, the graph moved upwards. If it is negative, it moved downwards.

Example A: The graph of $y = (x+3)^2 - 2$ has been moved 3 to the left and 2 down. Its minimum point is (-3, -2)

Example B: The graph of $y = (x-5)^2 + 4$ is a 'happy' parabola that has been moved 5 to the right and 4 up. Its minimum point is (5, 4)

Key facts:

- $y = (x a)^2 + b$ is a "happy" parabola. Its minimum turning point is (a, b)
- $y = -(x a)^2 + b$ is an "unhappy" parabola. Its maximum turning point is (a,b)
- The axis of symmetry of $y = (x a)^2 + b$ or $y = -(x a)^2 + b$ has the equation x = a

Example 1

This graph has an equation of the form $y = (x - a)^2 + b$. What is its equation?

Solution

The minimum point is (4, 1). This tells us that the graph has been moved 4 to the right (so a = 4) and 1 up (so b = 1)

Therefore its equation is $y = (x-4)^2 + 1$

Example 2

What is the equation of this parabola?

Solution

The graph is unhappy, so it has an equation of the form $y = -(x-a)^2 + b$ (as opposed to $y = (x-a)^2 + b$)

The maximum point is (2, 3). The graph has moved 2 to the right and 3 up. Therefore its equation is $y = -(x-2)^2 + 3$.

Write down the equation of the graphs shown below, which have the form $y = ax^2 + b$. 1.

a)

(b)

(c)

d)

(e)

(f)

g)

(h)

j)

(l)

m)

(n)

Write down the equation of the graphs shown below, which have the form $y = (x + a)^2 + b$. **2.**

(b)

d)

(e)

g)

(h)

j)

(k)

m)

Answers

Exercise 1

1. a)
$$v =$$

(b)
$$y = 3x^2$$

$$(\mathbf{c}) \qquad \mathbf{v} = 5x^2$$

1. a)
$$y = x^2$$
 (b) $y = 3x^2$ **(c)** $y = 5x^2$ **(d)** $y = 1.5x^2$

e)
$$y = 5x^2$$

$$\mathbf{(f)} \qquad \mathbf{v} = 3x^2$$

$$(\mathbf{g}) \qquad y = -x$$

e)
$$y = 5x^2$$
 (f) $y = 3x^2$ **(g)** $y = -x^2$ **(h)** $y = -2x^2$

$$\mathbf{i)} \qquad y = -5x^2$$

(j)
$$y = \frac{1}{2}x^2$$

$$(\mathbf{k}) \qquad y = \frac{1}{4} x$$

i)
$$y = -5x^2$$
 (j) $y = \frac{1}{2}x^2$ (k) $y = \frac{1}{4}x^2$ (l) $y = \frac{1}{3}x^2$

m)
$$y = 40x^2$$

n)
$$y = -25x^2$$

$$y = 40x^2$$
 (n) $y = -25x^2$ (o) $y = -\frac{3}{4}x^2$

Exercise 2

$$y = x^2 + 2$$

b)
$$y = x^2 -$$

a)
$$y = x^2 + 2$$
 (b) $y = x^2 - 1$ **(c)** $y = x^2 + 1.5$ **(d)** $y = -x^2 + 5$

(d)
$$y = -x^2 + 5$$

(e)
$$y = -x^2 + 3$$
 (f) $y = -x^2 - 2$ (g) $y = 2x^2 + 1$ (h) $y = 5x^2 + 4$

$$y = -x^2 - 2$$

$$y = 2x^2 + 1$$

(h)
$$y = 5x^2 + 4$$

(i)
$$y = 3x^2 + 2$$

$$y = 2x^2 - 3$$

$$y = \frac{1}{2}x^2 - 9$$

(i)
$$y = 3x^2 + 2$$
 (j) $y = 2x^2 - 3$ (k) $y = \frac{1}{2}x^2 - 9$ (l) $y = -2x^2 + 8$

(m)
$$y = -x^2 + 3$$
 (n) $y = -3x^2 - 2$

$$y = -3x^2 - 2$$

$$y = (x-2)^2 + 1$$

a)
$$y = (x-2)^2 + 1$$
 (b) $y = (x-1)^2 + 6$ **(c)** $y = (x-4)^2$

(c)
$$y = (x-4)^2$$

d)
$$y = (x-3)^2 - 4$$
 (e) $y = x^2 - 5$ **(f)** $y = (x+1)^2 + 3$

(e)
$$y = x^2 - 5$$

(f)
$$y = (x+1)^2 + 3$$

g)
$$y = (x+2)^2 - 4$$

(h)
$$y = (x+6)^2$$

g)
$$y = (x+2)^2 - 4$$
 (h) $y = (x+6)^2$ **(i)** $y = (x-4)^2 + 20$

i)
$$v = (x-10)^2 - 2$$

j)
$$y = (x-10)^2 - 2$$
 (k) $y = (x-25)^2 + 10$ **(l)** $y = (x+30)^2 + 5$

(1)
$$v = (x+30)^2 + 5$$

m)
$$y = (x-1)^2 - 1$$
 (n) $y = x^2 + 6$

$$y = x^2 + 6$$