Changing the Subject Relationships SPTA Mathematics - Topic Questions with Notes

Changing the subject of a formula was introduced at National 4 and is just like rearranging an equation: you move things from one side to the other and 'do the opposite'.

A useful (but optional) tip for changing the subject questions is to switch the left-hand side and the right-hand side before you begin moving things, so that the letter that will be the subject is already on the left-hand side. However this does not work on every occasion (see example 4).

It is important to move things over in the correct order. Because we are rearranging a formula (effectively going backwards), the order that we deal with terms in is the exact opposite of BODMAS – i.e. the first thing we deal with is terms that are added or subtracted; then we deal with multiplying and division; then squares and square roots, and then lastly split up any brackets.

Example 1

Change the subject of the formula y = ab + d to 'b'

Solution

Step One– flip the left and right hand sides:ab + d = yStep Two– rearrange; dealing with the adding/subtracting first, then multiplying dividing

$$ab + d = y$$

$$ab = y - d \qquad (+d \text{ moves over and becomes } -d)$$

$$b = \frac{y - d}{a} \qquad (\times a \text{ moves over and becomes } \div a)$$

Example 2

Change the subject of the formula $A = \pi d^2$ to 'd'

Solution

<u>Step One</u> – flip the left and right hand sides: $\pi d^2 = A$ <u>Step Two</u> – rearrange; dealing with the multiplying/dividing first, then the square/square root

$$\pi d^{2} = A$$

$$d^{2} = \frac{A}{\pi} \qquad (\times \pi \text{ moves over and becomes } \div \pi)$$

$$d = \pm \sqrt{\frac{A}{\pi}} \qquad (\text{squaring moves over and becomes square root})$$

Just because a formula has a square (or square root) in it does not mean that the final answer will have to have a square root (or square) in it. It depends on which letter we are making the subject. If that letter is being squared, then we have to use a square root. If another letter is being squared, then we do not.

Example 3

Change the subject of the formula
$$P = qt^2 + d$$
 to 'q'

Solution

<u>Step One</u> – flip the left and right hand sides: $qt^2 + d = P$

<u>Step Two</u> – rearrange; dealing with the adding/taking away, then the multiplying/dividing. There is no need to 'deal with' the square, as q is not being squared

 $qt^{2} + d = P$ $qt^{2} = P - d \qquad (+d \text{ moves over and becomes } -d)$ $q = \frac{P - d}{t^{2}} \qquad (\times t^{2} \text{ moves over and becomes } \div t^{2})$

There are some occasions in which it does not help to flip the left and right-hand sides. This usually involves formulae where the letter that is to become the subject is on the denominator of the right-hand side.

Example 4

Change the subject of the formula $D = \frac{V}{T}$ to 'T'

Solution

On this occasion, step one is not required. This is because T will move naturally over to the left-hand side when we begin rearranging.

$$D = \frac{V}{T}$$

$$DT = V \qquad (\div T \text{ moves over and becomes } \times T)$$

$$T = \frac{V}{D} \qquad (\times D \text{ moves over and becomes } \div D)$$

Exercise 1

- **1.** Change the subject of each formula to *x*.
 - y = x + 3**(b)** y = x - 5a) y = x + a(c) (e) y = 3x**d**) y = x - b(**f**) y = 10xg) y = kx(h) y = axy = 3p + x(i) **j**) y = x - 5t(k) y = 2x + 1(1) y = 3x - 7**m**) y = 7x + 4a(n) y = 3b + 4x(o) y = 8 + 10x

2. Make *a* the subject of each formula.

b = 4 - a

a)

			(-)	<i>J</i>
d)	m = 2 - 2a	(e) $q = 7 - 5a$	(f)	c = 20 - 3a

(b)

d = 12 - a

(c) v = 5x - a

- g) r = s 2a (h) t = d 4a (i) z = 4b 5a
- **j**) k = 2h 7a (**k**) p = 6q 11a (**l**) g = 2x 9a

Make *x* the subject of each formula below. 3.

a)	y = ax + b	(b)	y = mx + c	(c)	t = sx - r
d)	p = qx + 2r	(e)	m = fx - 3n	(f)	a = b + cx
g)	k = h - mx	(h)	d = 3b + cx	(i)	g = kc - hx

Change the subject of each formula to the letter shown in brackets. 4.

a)
$$P = 4l$$
 (l) (b) $V = IR$ (l) (c) $S = DT$ (T)
d) $A = lb$ (b) (e) $C = \pi d$ (d) (f) $G = UT$ (U)
g) $v = u + at$ (t) (h) $P = 2l + 2b$ (l) (i) $H = xy + 5m$ (y)

Change the subject of each formula to c. 5.

- **(b)** $x = \frac{1}{5} c$ **(c)** $y = \frac{1}{4} c$ $b = \frac{1}{2} c$ a) **d**) $m = \frac{1}{6} c$ (**e**) $k = \frac{1}{9} c$ (**f**) $d = \frac{1}{10} c$ **g**) $a = \frac{1}{2}c + 2$ (**h**) $h = \frac{1}{3}c - 5$ (**i**) $p = \frac{1}{4}c + q$ (1) $r = \frac{1}{5} c - 3q$
- **j**) $y = \frac{1}{10} c x$ (**k**) $t = \frac{1}{8} c + 2s$

Change the subject of each formula to *x*. 6.

a) $y = \frac{3}{r}$ (**b**) $d = \frac{c}{r}$ (c) $m = \frac{y}{r}$

d)
$$s = \frac{a+2}{x}$$
 (**e**) $w = \frac{z-1}{x}$ (**f**) $a = \frac{b+c}{x}$

- (**h**) $k = \frac{x-5}{2}$ (i) $p = \frac{3-x}{4}$ **g**) $a = \frac{x+8}{9}$
- **j**) $y = \frac{2}{r} + 1$ (**k**) $z = \frac{6}{r} 7$ (**l**) $h = \frac{m}{r} + k$

7. Change the subject of each formula to *k*.

a)
$$y = \sqrt{k}$$
 (b) $x = \sqrt{k}$ (c) $m = \sqrt{k}$
d) $a = \sqrt{\frac{k}{b}}$ (e) $c = \sqrt{\frac{k}{d}}$ (f) $h = \sqrt{\frac{k}{g}}$
g) $s = \sqrt{\frac{t}{k}}$ (h) $q = \sqrt{\frac{p}{k}}$ (i) $w = \sqrt{\frac{z}{k}}$
j) $r = k^2$ (k) $ab = k^2$ (l) $\frac{p}{q} = k^2$
m) $y = x + k^2$ (n) $c = k^2 - d$ (o) $x = 3k^2 - 1$

8. Change the subject of each formula to the letter shown in brackets.

a)
$$v^2 = u^2 + 2as$$
 (s) (**b**) $v^2 = u^2 + 2as$ (u)

c)
$$V = \pi r^2 h$$
 (*h*) (d) $V = \pi r^2 h$ (*r*)

e)
$$r = \sqrt{\frac{A}{\pi}}$$
 (A) (f) $L = 3 + \sqrt{6a}$ (a)

g)
$$2k = \sqrt{(p+4)}$$
 (p) (**h**) $x^2 = \frac{4yz}{t}$ (y)

i)
$$ar = \frac{1}{2}\sqrt{\frac{x}{b}}$$
 (b) (j) $st = A^2(x - 3y)$ (A)

k)
$$R = A^2(x - 3y)$$
 (x) (l) $na = \sqrt{(1 - n^2)}$ (n)

m)
$$d = \frac{t(n-1)}{n}$$
 (*n*) (**n**) $\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2}$ (*R*)

o)
$$d = \frac{a^2(x+b)}{4}$$
 (a)

Exercise 2

1. Change the subject of the formula to *c*.

$$ab = \frac{1}{2}\sqrt{\frac{x}{c^2}}$$

2. The formula for the velocity that a body must have to escape the gravitational pull of Earth is

$$V = \sqrt{2gR}$$

Change the subject of the formula to g.

3. For the formula given below, change the subject to x

$$A^2 = \sqrt{x} + 5$$

4. The formula for kinetic energy is

$$E = \frac{1}{2}mv^2$$

Change the subject of the formula to *v*.

5. Change the subject of the formula to *a*:

$$V = 3a^2b$$

6. Change the subject of the formula to *k*.

$$T = 2\pi \sqrt{\frac{m}{k}}$$

7. A formula to convert temperature from degrees Celsius to degrees Farenheit is

$$F = \frac{9}{5}C + 32$$

Change the subject of the formula to C.

8. The formula for finding the volume of a cone is given by

$$V = \frac{1}{3}\pi r^2 h$$

Change the subject of the formula to *r*.

9. Change the subject of the formula
$$m = \frac{k^2 + 2}{ab}$$
 to k.

10. Change the subject of the formula $a = b^2 c + 7$ to *b*.

11. Change the subject of this formula to m $k = \frac{mn}{3}$

12. The formula for finding the volume of a sphere is given by

$$V = \frac{4}{3}\pi r^3$$

Change the subject of the formula to *r*.

Answers

Exercise 1

1.	a)	x = y - 3	(b)	x = y + 5	(c)	x = y - a	(d)	x = y + b
	e)	$x = \frac{y}{3}$	(f)	$x = \frac{y}{10}$	(g)	$x = \frac{y}{k}$	(h)	$x = \frac{y}{a}$
	i)	x = y - 3p	(j)	x = y + 5t	(k)	$x = \frac{y-1}{2}$	(1)	$x = \frac{y+7}{3}$
	m)	$x = \frac{y - 4a}{7}$	(n)	$x = \frac{y - 38}{4}$	(0)	$x = \frac{y - 8}{10}$		

2. a)
$$a = 4 - b$$
 (b) $a = 12 - d$ (c) $a = 5x - y$ (d) $a = \frac{2 - m}{2}$
e) $a = \frac{7 - q}{5}$ (f) $a = \frac{20 - c}{3}$ (g) $a = \frac{s - r}{2}$ (h) $a = \frac{d - t}{4}$
i) $a = \frac{4b - z}{5}$ (j) $a = \frac{2h - k}{7}$ (k) $a = \frac{6p - q}{11}$ (l) $a = \frac{2x - g}{9}$

3. a)
$$x = \frac{y-b}{a}$$
 (b) $x = \frac{y-c}{m}$ (c) $x = \frac{t+r}{s}$ (d) $x = \frac{p-2r}{q}$
e) $x = \frac{m+3n}{f}$ (f) $x = \frac{a-b}{c}$ (g) $x = \frac{h-k}{m}$ (h) $x = \frac{d-3b}{c}$
i) $x = \frac{kc-g}{h}$

4. a) $l = \frac{P}{4}$ (b) $I = \frac{V}{R}$ (c) $T = \frac{S}{D}$ (d) $b = \frac{A}{l}$ e) $d = \frac{C}{\pi}$ (f) $U = \frac{G}{T}$ (g) $t = \frac{v - u}{a}$ (h) $l = \frac{P - 2b}{2}$

$$\mathbf{i)} \qquad y = \frac{H - 5m}{x}$$

5. a)
$$c = 2b$$
 (b) $c = 5x$ (c) $c = 4y$ (d) $c = 6m$
e) $c = 9k$ (f) $c = 10d$ (g) $c = 2a - 4$ (h) $c = 3h + 15$
i) $c = 4p - 4q$ (j) $c = 10y + 10x$ (k) $c = 8t - 16s$ (l) $c = 5r + 15q$

6. a)
$$x = \frac{3}{y}$$
 (**b**) $x = \frac{c}{d}$ (**c**) $x = \frac{y}{m}$ (**d**) $x = \frac{a+2}{s}$

e)
$$x = \frac{z-1}{w}$$
 (f) $x = \frac{b+c}{a}$ (g) $x = 9a-8$ (h) $x = 2k+5$

i)
$$x = 3 - 4p$$
 (j) $x = \frac{2}{y - 1}$ (k) $x = \frac{6}{z - 7}$ (l) $x = \frac{m}{h - k}$

7. a)
$$k = y^2$$
 (b) $k = x^2$ (c) $k = m^2$ (d) $k = a^2 b$

e)
$$k = c^2 d$$
 (**f**) $k = gh^2$ (**g**) $k = \frac{t}{s^2}$ (**h**) $k = \frac{p}{q^2}$

i)
$$k = \frac{z}{w^2}$$
 (**j**) $k = \sqrt{r}$ (**k**) $k = \sqrt{ab}$ (**l**) $k = \sqrt{\frac{p}{q}}$

m)
$$k = \sqrt{y - x}$$
 (**n**) $k = \sqrt{c + d}$ (**o**) $k = \sqrt{\frac{x + 1}{3}}$

a)
$$s = \frac{v^2 - u^2}{2a}$$
 (**b**) $u = \sqrt{v^2 - 2as}$ (**c**) $h = \frac{V}{\pi r^2}$ (**d**) $r = \sqrt{\frac{V}{\pi h}}$

e)
$$A = \pi r^2$$
 (f) $a = \frac{(L-3)^2}{6}$ (g) $p = 4k^2 - 4$
i) $b = \frac{x}{4a^2r^2}$ (j) $A = \sqrt{\frac{st}{x-3y}}$ (k) $x = \frac{R+3A^2y}{A^2}$

i)
$$b = \frac{x}{4a^2r^2}$$
 (**j**) $A = \sqrt{\frac{st}{x - 3y}}$

8.

m)
$$n = \frac{t}{t-d}$$
 (**n**) $R = \frac{r_1 r_2}{r_2 + r_1}$ (**o**) $a = \sqrt{\frac{4d}{x+b}}$

$$y = \frac{tx^2}{4z}$$

(h)

(l)

$$n = \sqrt{\frac{1}{a^2 + 1}}$$

Exercise 2

1.
$$\sqrt{\frac{x}{4a^2b^2}}$$
 or $\frac{\sqrt{x}}{2ab}$
2. $g = \frac{V^2}{2R}$
3. $x = (A^2 - 5)^2$
4. $v = \sqrt{\frac{2E}{m}}$
5. $a = \sqrt{\frac{v}{3b}}$
6. $k = \frac{4\pi^2 m}{T^2}$
7. $C = \frac{5}{9}(F - 32)$
8. $r = \sqrt{\frac{3V}{\pi h}}$
9. $k = \sqrt{mab - 2}$
10. $b = \sqrt{\frac{a - 7}{c}}$
11. $m = \frac{3k}{n}$
12. $r = \sqrt[3]{\frac{3V}{4\pi}}$