

Formula Sheet

Formulae that are given on the formula sheet in the exam (or in unit assessments)

Topic	Formula(e)
Volume of a Pyramid	$V = \frac{1}{3}Ah$
Volume of a Sphere and Cone	Sphere: $V = \frac{4}{3}\pi r^3$ Cone: $V = \frac{1}{3}\pi r^2 h$
The Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Area of a Triangle	$A = \frac{1}{2}ab\sin C$
Sine rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
Cosine rule	$a^{2} = b^{2} + c^{2} - 2bc \cos A$ or $\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$
Standard deviation	$\sqrt{\frac{\sum (x-\overline{x})^2}{n-1}}$ or $\sqrt{\frac{\sum x^2 - (\sum x)^2}{n}}{n-1}$

Formulae that are <u>not</u> given in the exam (or in unit assessments)

Торіс	Formula(e)
Completing the Square (quicker method)	$p = \frac{b}{2} \qquad q = -p^2 + c$
Gradient	$m = \frac{y_2 - y_1}{x_2 - x_1}$
Arc length and Sector Area	Arc length: $\frac{\text{Angle}}{360}\pi d$ Sector Area: $\frac{\text{Angle}}{360}\pi r^2$
Volume of a prism and cylinder	Prism: $V = Ah$ Cylinder: $V = \pi r^2 h$
Straight line	y - b = m(x - a)
Discriminant	$b^2 - 4ac$
Pythagoras' Theorem	$a^2 + b^2 = c^2$
Right-angled Trigonometry	$\sin x^{\circ} = \frac{\operatorname{Opp}}{\operatorname{Hyp}}$ $\cos x^{\circ} = \frac{\operatorname{Adj}}{\operatorname{Hyp}}$ $\tan x^{\circ} = \frac{\operatorname{Opp}}{\operatorname{Adj}}$
Trigonometry	$\tan x = \frac{\sin x}{\cos x} \qquad \qquad \sin^2 x + \cos^2 x = 1$
Magnitude of a vector	$ \mathbf{a} = \sqrt{a_1^2 + a_2^2}$ $ \mathbf{a} = \sqrt{a_1^2 + a_2^2 + a_3^2}$
Percentage increase and decrease	$\frac{\text{increase (or decrease)}}{\text{original amount}} \times 100$
Semi Interquartile Range (SIQR)	upper quartile – lower quartile 2