

Completing the Square

Completing the Square

The process of writing $y = ax^2 + bx + c$ in the form $y = a(x+p)^2 + q$ is called **completing** the square. The completed square form of the equation is useful because from it we can easily determine the maximum or minimum value of a function. It also has uses when we consider the graphs of these functions (see page 42).

To rewrite $y = x^2 + bx + c$ in the form $y = (x + p)^2 + q$, we use the fact that the number in the bracket (p) is half of the coefficient of x (b).

Example

Express
$$x^2 + 8x + 3$$
 in the form $(x + p)^2 + q$

Solution

We can immediately see that p = 4 (half of 8), so $x^2 + 8x + 3 = (x + 4)^2 + q$ Now we expand the bracket and compare to the original expression to work out q:

$$x^{2} + 8x + 3 = (x + 4)^{2} + q$$

$$x^{2} + 8x + 3 = (x + 4)(x + 4) + q$$

$$x^{2} + 8x + 3 = x^{2} + 8x + 16 + q$$

$$x^{3} = 16 + q$$

$$q = -13$$

Final answer: $x^2 + 8x + 3 = (x + 4)^2 - 13$

Exercise 1

Write the following in the form $(x + a)^2 + b$. 1.

(a)
$$x^2 + 4x$$

(b)
$$x^2 + 10x$$

(b)
$$x^2 + 10x$$
 (c) $x^2 + 7x$ **(d)** $x^2 + 9x$

(d)
$$x^2 + 9x$$

(e)
$$x^2 - 6x$$

(f)
$$x^2 - 8$$

(g)
$$x^2 - 5x$$

(e)
$$x^2 - 6x$$
 (f) $x^2 - 8x$ (g) $x^2 - 5x$ (h) $x^2 - 11x$

Write the following in the form $(x + a)^2 + b$. 2.

(a)
$$x^2 + 2x + 7$$

$$x^2 + 2x + 7$$
 (b) $x^2 + 6x + 2$ (c) $x^2 + 8x + 9$

(c)
$$x^2 + 8x + 9$$

(d)
$$x^2 + 10x + 27$$
 (e) $x^2 + 4x - 8$ (f) $x^2 + 16x - 3$

(e)
$$x^2 + 4x - 8$$

(f)
$$x^2 + 16x - 3$$

(g)
$$x^2 - 6x + 11$$
 (h) $x^2 - 2x + 5$ (i) $x^2 - 8x + 8$

(h)
$$x^2 - 2x + 5$$

(i)
$$x^2 - 8x + 8$$

(j)
$$x^2 - 14x - 15$$
 (k) $x^2 - 12x + 21$

(k)
$$x^2 - 12x + 21$$

(1)
$$x^2 - 20x - 6$$

Write the following in the form $(x + a)^2 + b$. **3.**

(a)
$$4 + 2x - x^2$$

(b)
$$7 + 4x - x^2$$

$$4 + 2x - x^2$$
 (b) $7 + 4x - x^2$ (c) $3 - 6x - x^2$

(d)
$$10 - 10x - x^2$$
 (e) $14 + 3x - x^2$ (f) $5 - 7x - x^2$

(e)
$$14 + 3x - x^2$$

(f)
$$5 - 7x - x^2$$

Answers

Exercise 1

1. a) $(x+2)^2-4$ **(b)** $(x+5)^2-25$ **(c)** $(x+3\cdot5)^2-12\cdot25$

d) $(x+4\cdot5)^2-20\cdot25$

(e) $(x-3.)^2-9$

(f) $(x-4)^2-16$

g) $(x-2\cdot5)^2-6\cdot25$ **(h)** $(x-5\cdot5)^2-30\cdot25$

a) $(x-1)^2 + 6$ 2.

(b) $(x+3)^2-7$

(c) $(x+4)^2-7$

d) $(x+5)^2+2$

(e) $(x+2)^2-12$

(f) $(x+8)^2-67$

g) $(x-3)^2+2$

(h) $(x-1)^2+4$

(i) $(x-4)^2-8$

j) $(x-7)^2-64$

(k) $(x-6)^2-15$

(1) $(x-10)^2-106$

a) $5-(x-1)^2$ **3.**

(b) $11-(x-2)^2$

(c) $12-(x+3)^2$

d) $35-(x+5)^2$

(e) $16 \cdot 25 - (x - 1 \cdot 5)^2$ (f) $17 \cdot 25 - (x + 3 \cdot 5)^2$