National 5 Learning Checklist – Expressions & Formulae

Topic	Skills	Extra Study / Notes	
Rounding			
Round to decimal places	e.g. 25.1241→25.1 to 1 d.p.		
·	34.676 → 34.68 to 2 d.p.		
Round to Significant	e.g. $1276 \rightarrow 1300$ to 2 sig. figs.		
Figures	$0.06356 \rightarrow 0.064$ to 2 sig. figs.		
	$37,684 \rightarrow 37,700$ to 3 sig. figs.		
	$0.005832 \rightarrow 0.00583$ to 3 sig. figs.		
Surds			
Simplifying	Learn Square Numbers: 4, 9, 16, 25, 36, 49, 64, 81,		
	100, 121, 144, 169. Use square numbers as factors:		
	e.g. $\sqrt{50} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}$		
Add/Subtract	e.g.		
	$\sqrt{50 + \sqrt{8}} = \sqrt{25 \times \sqrt{2} + \sqrt{4} \times \sqrt{2}} = 5\sqrt{2} + 2\sqrt{2} = 7\sqrt{2}$		
Multiply/Divide	$\sqrt{50} + \sqrt{8} = \sqrt{25} \times \sqrt{2} + \sqrt{4} \times \sqrt{2} = 5\sqrt{2} + 2\sqrt{2} = 7\sqrt{2}$ e.g. $\sqrt{5} \times \sqrt{15} = \sqrt{5 \times 15} = \sqrt{75} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3}$		
	$\frac{\sqrt{48}}{\sqrt{3}} = \sqrt{\frac{48}{3}} = \sqrt{16} = 4$		
Rationalise	Remove surd from denominator.		
Denominator			
Denominator	e.g. $\frac{1}{\sqrt{3}} = \frac{1 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{3}}{\sqrt{9}} = \frac{\sqrt{3}}{3}$		
	$\sqrt{3}$ $\sqrt{3} \times \sqrt{3}$ $\sqrt{9}$ $\sqrt{3}$		
Indices			
Use Laws of Indices	1. $a^x \times a^y = a^{x+y}$ e.g. $a^2 \times a^3 = a^{2+3} = a^5$		
	2. $a^x \div a^y = a^{x-y}$ $a^7 \div a^4 = a^{7-4} = a^3$		
	3. $(a^x)^y = a^{xy}$ $(a^4)^5 = a^{4x5} = a^{20}$		
	4. $\frac{1}{a^x} = a^{-x}$ $\frac{1}{a^3} = a^{-3}$		
	5. $a^0 = 1$ $a^0 = 1$		
Scientific Notation /	The first number is always between 1 and 10.		
Standard Form	e.g. $54,600 = 5.46 \times 10^4$		
Standard Form	0.000978 = 9.78 × 10 ⁻⁴		
	$(1.3 \times 10^5) \times (8 \times 10^3) = 10.4 \times 10^8 = 1.04 \times 10^9$		
Evaluate using indices	e.g. $27^{\frac{2}{3}} = \sqrt[3]{27^2} = 3^2 = 9$		
Algebra	C.8. 27' - \27 - 3 - 9		
Expand Single Bracket	3(x+4) = 3x+12		
Expand Two Brackets	Use FOIL (Firsts Outsides Insides Lasts) or another		
Expand Two Brackets	suitable method		
	Suitable Method		
	$(x+3)(x-2) = x^2 + 3x - 2x - 6 = x^2 + x - 6$		
	Know that every term in the first bracket must		
	multiply every term in the second.		
	e.g. $(x + 2)(x^2 - 3x - 4) = x^3 - 3x^2 - 4x + 2x^2 - 6x - 8$		
	$(x + 2)(x - 3x - 4) = x - 3x - 4x + 2x - 6x - 8$ $= x^{3} - x^{2} - 10x - 8$		
Simplify Expression	Put together the terms that are the same:	+ + +	
	e.g. $x^2 + 4x + 3 - 2x + 8 = x^2 + 2x + 11$		
	$a \times a \times a = a^3$		
Factorise – Common	Take the factors each term has in common outside		
Factor	the bracket:		
	e.g. $4x^2 + 8x = 4x(x + 2)$		
	NB: Always look for a common factor first.		

www.zetamaths.com © Zeta Maths Limited

Algebra Contd.			
Factorise – Difference of	Always takes the same form, one square number		
Two Squares	take away another. Easy to factorise:		
	e.g. $x^2 - 9 = (x + 3)(x - 3)$		
	$5x^2 - 125 = 5(x^2 - 25)$ (Common factor first)		
	= 5(x+5)(x-5)		
Factorise – Trinomial	Use any appropriate method to factorise:		
(simple)	e.g. Opposite of FOIL:		
	Factors of first term are Firsts in brackets.		
	Lasts multiply to give last term and add to give		
	middle term.		
Foreside Total and all	$x^2 - x - 6 = (x - 3)(x + 2)$		
Factorise – Trinomial	This is more difficult. Use suitable method. Using opposite of FOIL above with trial and error.		
(hard)	NB: The Outsides add Insides give a check of the		
	correct answer:		
	e.g. $3x^2 - 13x - 10$		
	$=\frac{(3x-5)(x+2)}{}$		
	Check: $3x \times 2 + (-5) \times x = 6x - 5x = -x$		
	=(3x+2)(x-5)		
	Check: $3x \times (-5) + 2 \times x = -15x + 2x = -13x$		
	If the answer is wrong, score out and try alterative		
	factors or positions. Keep a note of the factors you		
	have tried.		
Complete the Square	e.g. $x^2 + 8x - 13 = (x + 4)^2 - 13 - 16 = (x + 4)^2 - 29$		
Algebraic Fractions			
Simplifying Algebraic	Step 1: Factorise expression		
Fractions	Step 2: Look for common factors.		
	Step 3: Cancel and simplify		
	$6x^2 - 12x = 6x(x-2) = 6x$		
	$\frac{\partial x}{\partial x^2 + x - 6} = \frac{\partial x}{(x + 3)(x - 2)} = \frac{\partial x}{\partial x + 3}$		
Add and Subract	Find a common denominator. This can be done		
Fractions	either by working out the lowest common		
Tractions	denominator, or by using Smile and Kiss		
	$\frac{5a}{b} + \frac{3d}{2c} = \frac{10ac}{2bc} + \frac{12bd}{2bc} = \frac{10ac + 12bd}{2bc} = \frac{5ac + 6bd}{bc}$		
	D 2C 2DC 2DC 2DC DC		
Multiply Fractions	Multiply top with top, bottom with bottom:		
Multiply Fractions			
	$\frac{3a}{3a} \times \frac{4b}{3a} = \frac{12ab}{3a}$		
	7c 5d 35cd		
Divide Fractions	Invert second fraction and multiply:		
	$\frac{6x^2}{2} \div \frac{4x}{2} = \frac{6x^2}{2} \times \frac{3z}{2} = \frac{18x^2z}{2} = \frac{2xz}{2}$		
	7y 3z 7y 4x 28xy 14y		
Volumes			
Volume of a prism	V = Area of base x height		
Volume of a cylinder	$V = \pi r^2 h$		
Volume of a cone	$V = \frac{1}{\pi} r^2 h$		
	$V = -\pi r^2 h$		
Volume of a sphere	4 .		1
·	$V = \frac{4}{3}\pi r^3$		
Rearrange each of the	e.g. Cylinder has volume 400cm ³ and radius 6cm,		+
formulae to find an	find the height		
unknown	_		
	$V = \pi r^2 h \qquad h = \frac{400}{\pi \times 6^2}$		
	$\pi \times 6^{-}$		
	$\frac{V}{\pi r^2} = h$ $h = \dots$		
	πr^2 $h =$	 	

www.zetamaths.com © Zeta Maths Limited

Volumes Contd.		
Volume of composite	These are two of the above combined:	
shapes	Label them V ₁ and V ₂	
	e.g. $V_1 = \frac{4}{3}\pi r^3 \div 2$ $V_1 =$ $V_2 = \pi r^2 h$ $V_2 =$	
Gradient		
Find the gradient of a	Know that gradient is represented by the letter m	
line joining two points	Step 1: Select two coordinates	
	Step 2: Label them (x_1, y_1) (x_2, y_2)	
	Step 3: Substitute them into gradient formula	
	e.g. $(-4, 4), (12, -28)$	
	$y_2 - y_1 = (-28) - 4 = -32 = 3$	
	$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{(-28) - 4}{12 - (-4)} = -\frac{-32}{16} = -2$	
Circles		
Length of Arc	This finds the length of the arc of a sector of a circle:	
	$LOA = \frac{angle}{360} \times \pi d$ or $\frac{LOA}{\pi d} = \frac{angle}{360}$	
	For harder questions rearrange formula to find angle	\perp
Area of Sector	$AOS = \frac{angle}{360} \times \pi r^2$ or $\frac{AOS}{\pi r^2} = \frac{angle}{360}$	
	For harder questions rearrange formula to find angle	

www.zetamaths.com © Zeta Maths Limited