

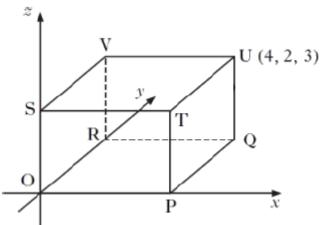
3d Coordinates

We can extend the traditional 2 dimensional Cartesian diagram into 3 dimensions by adding a third axis called the z axis which is at right angles to both the x axis and y axis.

Example (diagram adapted from 2010 Higher exam paper)

In the diagram on the right, the point U has coordinates (4, 2, 3).

State the coordinates of P, V and Q.

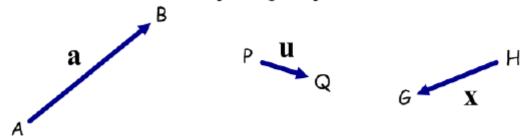


Solution

P is the point (4, 0, 0) V is the point (0, 2, 3) Q is the point (4, 2, 0)

Definition of a Vector

A vector is a quantity that has both size <u>and</u> direction. It can be represented as an arrow, where the length of the arrow represents the vector's size (known as a **directed line segment**); and the direction the arrow is pointing in represents its direction.



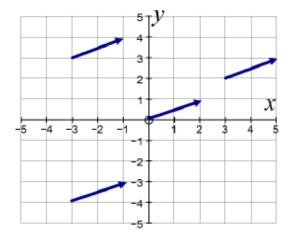
There are two ways of naming a vector:

- One way is to represent a vector by a single letter. For instance in the three examples above, the three vectors are called a, u and x. In print, we use a bold type letter to represent a vector, e.g. a. When handwriting, we use underlining in place of bold, e.g. a.
- Another way is to represent a vector using the start and end points. For instance the first vector above goes from A to B, and so it could be represented as \(\overline{AB} \). The middle vector could be represented \(\overline{PQ} \), and the final one would be represented \(\overline{HG} \) (not \(\overline{GH} \)).

Components of a vector

A vector is described in terms of its **components**, which describe how far the vector moves in the x and y directions respectively. For a three-dimensional vector there would be three components, with the third component referring to the z direction.

With vectors, the important thing is how the vector moves, not where it begins or starts. All the vectors in the diagram on the right represent the same vector \mathbf{a} , as both move 2 units in the x direction and 1 unit in the y direction:



The components of a vector are written in a column. A 2-d vector would be written $\begin{pmatrix} x \\ y \end{pmatrix}$. A

3-d vector would be
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
. For example the vector $\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ is a 3-d vector moving 1 unit in the

x direction, 2 units in the y direction and -3 units in the z direction.

Adding Vectors

We can add vectors to create a resultant vector. We can do this in two ways:

• numerically by adding their components.

If we have two vectors,
$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$, then the resultant vector $\mathbf{a} + \mathbf{b} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix}$.

In a diagram by joining them 'nose to tail'.

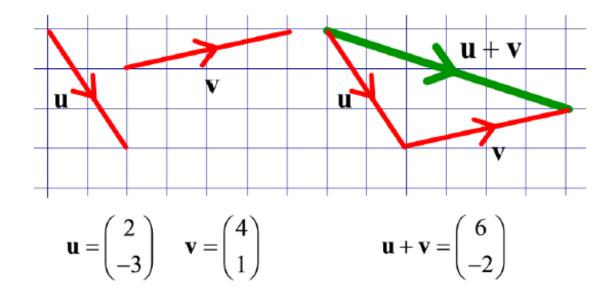
$$\mathbf{u} + \mathbf{v}$$

$$\mathbf{v} + \mathbf{u}$$

$$\mathbf{v} + \mathbf{v} = \begin{pmatrix} 6 \\ -2 \end{pmatrix}$$

$$\mathbf{v} + \mathbf{u} = \begin{pmatrix} 6 \\ -2 \end{pmatrix}$$

It does not matter which order you add vectors in: $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$.



In real life, resultant vectors can be used to work out what the combined effect of more than one force pulling on an object will be.

Example 1 - numerical

Three forces act on an object. The three forces are represented by the vectors a, b and c, where:

$$\mathbf{a} = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 0 \\ -5 \\ 6 \end{pmatrix} \qquad \mathbf{c} = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix}$$

Find the resultant force.

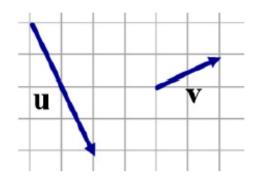
Solution

The resultant force is given by a + b + c.

$$\mathbf{a} + \mathbf{b} + \mathbf{c} = \begin{pmatrix} (-1) + 0 + 4 \\ 3 + (-5) + 0 \\ 2 + 6 + 2 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ 10 \end{pmatrix}$$

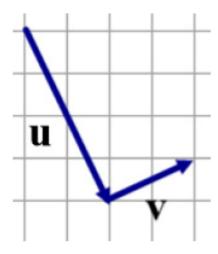
Example 2 - from a diagram

The diagram on the right shows two directed line segments u and v. Draw the resultant vector $\underline{\mathbf{u}} + \underline{\mathbf{v}}$

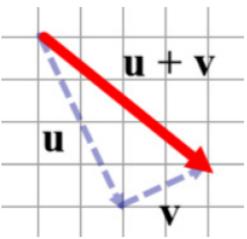


Solution

Too add the vectors, we join the 'tail' of v to the 'nose' (pointed end) of u:



We can now draw in the vector $\mathbf{u} + \mathbf{v}$ going from the 'tail' of \mathbf{u} to the 'nose' of \mathbf{v} .



Vector Pathways

We can use the rules of adding and taking away vectors to express a vector \overrightarrow{AB} in a diagram as a combination of other, known, vectors.

To do this, we identify a route, or pathway, between A and B, in which each step of the route can be expressed in terms of one of the other known pathways. We can choose *any* route we like, and the final answer, when simplified, will always be the same.

Fact: If we move backwards along a vector, we take that vector away.

Example 3 - vector pathways

The diagram shows a cuboid. \overrightarrow{SR} represents vector $\underline{\mathbf{f}}$, \overrightarrow{ST} represents vector $\underline{\mathbf{g}}$ and \overrightarrow{SW} represents vector $\underline{\mathbf{h}}$.

Express \overrightarrow{SU} and \overrightarrow{TV} in terms of $\underline{\mathbf{f}}$, $\underline{\mathbf{g}}$ and $\underline{\mathbf{h}}$.

For \overrightarrow{SU} :

Step one - identify a pathway from S to U.

One possible pathway is $\overrightarrow{SR}, \overrightarrow{RU}$

Step two - express each part of the pathway in terms of a known vector

$$\overrightarrow{SR} = \mathbf{f}, \ \overrightarrow{RU} = \mathbf{g}$$

Therefore $\overrightarrow{SU} = \mathbf{f} + \mathbf{g}$

For \overrightarrow{TV} :

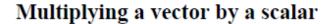
Step one - identify a pathway from T to V.

One possible pathway is \overrightarrow{TS} , \overrightarrow{SW} , \overrightarrow{WV}

Step two - express each part of the pathway in terms of a known vector

 \overrightarrow{TS} = backwards along \mathbf{g} , $\overrightarrow{SW} = \mathbf{h}$, $\overrightarrow{WV} = \mathbf{f}$

Therefore $\overrightarrow{TV} = -\mathbf{g} + \mathbf{h} + \mathbf{f}$ (or $\mathbf{f} - \mathbf{g} + \mathbf{h}$ or any other equivalent expression)

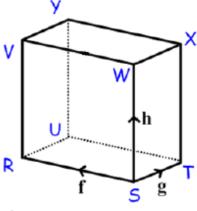


A scalar is a quantity that has size but no direction. 'Normal' numbers such as 2, -5 or 14·1 are scalars.

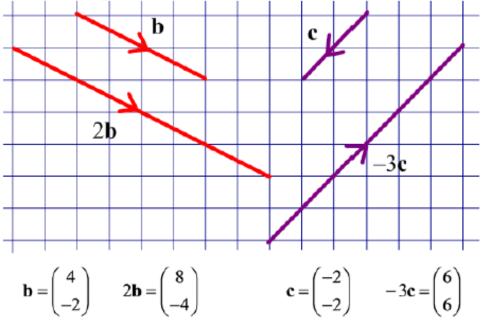
We can multiply a vector by a scalar in two ways:

· numerically by multiplying each component of the vector.

If we have a vectors,
$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
 and a scalar k , then $k\mathbf{a} = \begin{pmatrix} ka_1 \\ ka_2 \end{pmatrix}$.



 In a diagram by making a vector shorter or longer by a scale factor of k. The vector will still point in the same direction, but will be k times longer (or shorter if k < 1). If k is negative, the vector will point 'backwards'.



<u>Example</u>

Given that
$$\mathbf{a} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$, calculate $3\mathbf{a} - 2\mathbf{b} + 4\mathbf{c}$

Solution

$$3\mathbf{a} - 2\mathbf{b} + 4\mathbf{c} = 3 \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix} - 2 \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} + 4 \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} 9 \\ 6 \\ -12 \end{pmatrix} - \begin{pmatrix} 10 \\ 0 \\ 2 \end{pmatrix} + \begin{pmatrix} 4 \\ -8 \\ 12 \end{pmatrix}$$

$$= \begin{pmatrix} 9 -10 + 4 \\ 6 - 0 + (-8) \\ (-12) - 2 + 12 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \\ -2 \\ -2 \end{pmatrix}$$

Magnitude

The **magnitude** of a vector is the length of a vector. The magnitude of the vector \mathbf{a} is written using two vertical lines, $|\mathbf{a}|$.

The magnitude of a two-dimensional vector is found using a version of Pythagoras' Theorem:

Formula. This formula is not given on the National 5 Mathematics exam paper.

The magnitude of the vector
$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
 is given by $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}$

There is also a three-dimensional equivalent of Pythagoras' theorem that can be used to find the magnitude of a 3-d vector when its components are known.

The magnitude of the vector
$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 is given by $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

Example 1 - magnitude

Calculate the magnitude of the vector
$$\mathbf{x} = \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}$$

Solution

$$|\mathbf{x}| = \sqrt{2^2 + (-5)^2 + 1^2}$$

= $\sqrt{4 + 25 + 1}$
= $\sqrt{30}$ units

Example 2

Given that
$$\mathbf{a} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$, calculate $|2\mathbf{a} - 3\mathbf{c}|$

Solution

$$2\mathbf{a} - 3\mathbf{c} = 2 \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix} - 3 \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} 6 \\ 4 \\ -8 \end{pmatrix} - \begin{pmatrix} 3 \\ -6 \\ 9 \end{pmatrix}$$

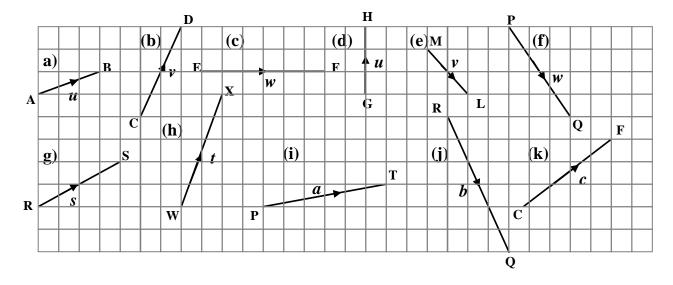
$$= \begin{pmatrix} 3 \\ 10 \\ -17 \end{pmatrix}$$
so $|2\mathbf{a} - 3\mathbf{c}| = \sqrt{3^2 + 10^2 + (-17)^2}$

$$= \sqrt{9 + 100 + 289}$$

$$= \sqrt{398}$$

Exercise 1

1. Name the following vectors in 2 ways and write down the components:



2. Draw representations of the following vectors on squared paper.

a)
$$v = \begin{pmatrix} 5 \\ 12 \end{pmatrix}$$
 (b) $w = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$ (c) $u = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$ (d) $\overrightarrow{AB} = \begin{pmatrix} 4 \\ -4 \end{pmatrix}$

$$(\mathbf{b}) \qquad \mathbf{w} = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$$

$$\mathbf{c}) \qquad \mathbf{u} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$$

(d)
$$\overrightarrow{AB} = \begin{pmatrix} 4 \\ -4 \end{pmatrix}$$

e)
$$\overrightarrow{CD} = \begin{pmatrix} -4 \\ -2 \end{pmatrix}$$
 (f) $\overrightarrow{EF} = \begin{pmatrix} 8 \\ 0 \end{pmatrix}$ (g) $r = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ (h) $p = \begin{pmatrix} 0 \\ -3 \end{pmatrix}$

$$(\mathbf{f}) \qquad \stackrel{\longrightarrow}{EF} = \begin{pmatrix} 8 \\ 0 \end{pmatrix}$$

$$(\mathbf{g}) \qquad \mathbf{r} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

$$(\mathbf{h}) \qquad \mathbf{p} = \begin{pmatrix} 0 \\ -3 \end{pmatrix}$$

$$\mathbf{i)} \qquad \mathbf{q} = \begin{pmatrix} -5 \\ -6 \end{pmatrix}$$

$$(\mathbf{j}) \qquad \overrightarrow{XY} =$$

$$\mathbf{(k)} \qquad \overrightarrow{PQ} = \begin{pmatrix} 0 \\ 5 \end{pmatrix}$$

i)
$$q = \begin{pmatrix} -5 \\ -6 \end{pmatrix}$$
 (j) $\overrightarrow{XY} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$ (k) $\overrightarrow{PQ} = \begin{pmatrix} 0 \\ 5 \end{pmatrix}$ (l) $\overrightarrow{ST} = \begin{pmatrix} -4 \\ 0 \end{pmatrix}$

3. Calculate the magnitude of each of the vectors in questions 1 and 2 above leaving your answers as surds in their simplest form.

$$\mathbf{a}) \qquad \begin{vmatrix} 3 \\ 4 \end{vmatrix}$$

(b)
$$\begin{vmatrix} 7 \\ 24 \end{vmatrix}$$

a)
$$\begin{vmatrix} 3 \\ 4 \end{vmatrix}$$
 (b) $\begin{vmatrix} 7 \\ 24 \end{vmatrix}$ (c) $\begin{vmatrix} 12 \\ 5 \end{vmatrix}$

d)
$$\begin{vmatrix} -6 \\ -8 \end{vmatrix}$$

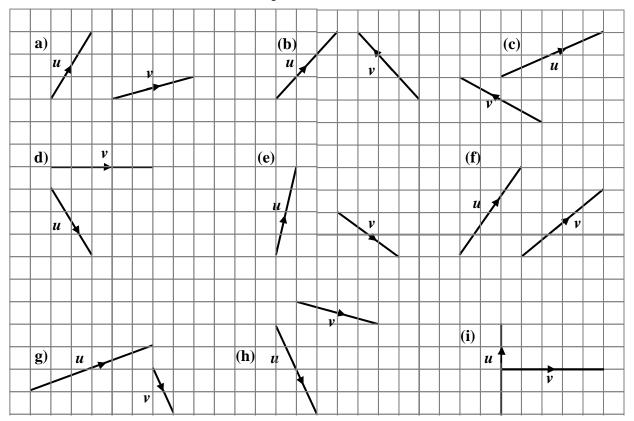
(e)
$$\begin{pmatrix} -3 \\ 4 \end{pmatrix}$$

d)
$$\begin{vmatrix} -6 \\ -8 \end{vmatrix}$$
 (e) $\begin{vmatrix} -3 \\ 4 \end{vmatrix}$ (f) $\begin{vmatrix} 12 \\ -5 \end{vmatrix}$

Exercise 2

Draw diagrams on squared paper to illustrate u + v for each pair of vectors given. 1. **(i)**

(ii) State the components of the resultant vector and calculate its magnitude leaving your answers as a surd in its simplest form



State the components of the resultant vector and calculate its magnitude. ii)

$$\mathbf{a)} \qquad \mathbf{a} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}; \ \mathbf{b} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$

(b)
$$a = \begin{pmatrix} 4 \\ 7 \end{pmatrix}; b = \begin{pmatrix} -9 \\ 3 \end{pmatrix}$$

$$\mathbf{c}) \qquad \mathbf{a} = \begin{pmatrix} -4 \\ -2 \end{pmatrix}; \ \mathbf{b} = \begin{pmatrix} 6 \\ -5 \end{pmatrix}$$

(d)
$$a = \begin{pmatrix} 0 \\ -5 \end{pmatrix}; b = \begin{pmatrix} -3 \\ 3 \end{pmatrix}$$

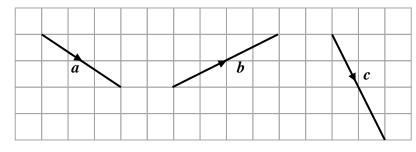
e)
$$a = \begin{pmatrix} -6 \\ -4 \end{pmatrix}$$
; $b = \begin{pmatrix} -5 \\ 6 \end{pmatrix}$ (f) $a = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$; $b = \begin{pmatrix} 0 \\ -3 \end{pmatrix}$

(f)
$$a = \begin{pmatrix} 4 \\ 0 \end{pmatrix}; b = \begin{pmatrix} 0 \\ -3 \end{pmatrix}$$

$$\mathbf{g}) \qquad \mathbf{a} = \begin{pmatrix} 0 \\ 5 \end{pmatrix}; \ \mathbf{b} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

$$(\mathbf{h}) \qquad \boldsymbol{a} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}; \ \boldsymbol{b} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

3. The diagram shows 3 vectors a, b and c.



Draw diagrams on squared paper to represent: i)

For each resultant vector, state the components and calculate its magnitude correct to one ii) decimal place.

a)
$$a+b$$

(b)
$$a+c$$

(c)
$$b+a$$

(c)
$$b+c$$
 (d) $(a+b)+c$

e)
$$a + (b + c)$$

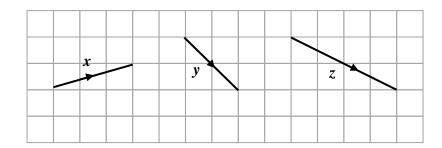
For the vectors in question 3 draw representations of these vectors. 4. i)

- 2*a* **a**)
- **(b)** 3**b**
- 0·5*c* (c)
- (d) -2**b**

- -4ae)
- **(f)**
- **(g)** 3a + 2b
- **(h)** c + 4a

State the components of each of the vectors above and calculate the magnitude leaving ii) answers as a surd in its simplest form.

The diagram shows 3 vectors x, y and z. **5.**



- Draw diagrams to represent: i)
- a) x + y
- (b) x+z (c) y+z
- $(\mathbf{d}) \qquad (x+y)+z$

- x + (y + z)e)
- Calculate, correct to one decimal place: ii)
- a)

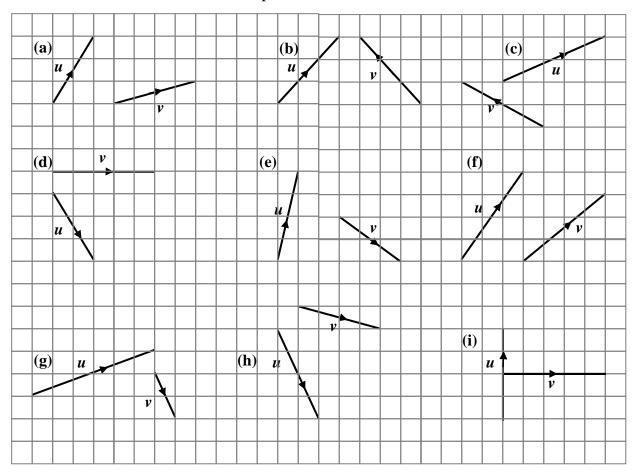
- |x + y| (b) |x + z| (c) |y + z| (d) |(x + y) + z|
- |x+(y+z)|e)
- For the vectors in question 5, calculate: **6.**
 - |2x|a)
- **(b)**
- |3y| (c) |0.5z| (d) |-2y|

- e)

- |-4x| (f) |-z| (g) |3x + 2y| (h) |4y + 3x|

Exercise 3

- 1. Draw diagrams on squared paper to illustrate u - v for each pair of vectors given. i)
 - ii) State the components of the resultant vector and calculate its magnitude leaving your answers as surds in their simplest form.



- Draw diagrams on squared to illustrate a b for each the following pairs of vectors. 2. i)
 - State the components of the resultant vector and calculate its magnitude correct to one ii) decimal place.

$$\mathbf{a)} \qquad \mathbf{a} = \begin{pmatrix} 9 \\ 7 \end{pmatrix}; \ \mathbf{b} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$

(b)
$$a = \begin{pmatrix} -4 \\ -7 \end{pmatrix}; b = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$

(c)
$$a = \begin{pmatrix} 5 \\ 8 \end{pmatrix}$$
; $b = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$

d)
$$a = \begin{pmatrix} 2 \\ 4 \end{pmatrix}; b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

(e)
$$a = \begin{pmatrix} -2 \\ -4 \end{pmatrix}$$
; $b = \begin{pmatrix} -2 \\ -6 \end{pmatrix}$

(b)
$$a = \begin{pmatrix} -4 \\ -7 \end{pmatrix}$$
; $b = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$ (c) $a = \begin{pmatrix} 5 \\ 8 \end{pmatrix}$; $b = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$
(e) $a = \begin{pmatrix} -2 \\ -4 \end{pmatrix}$; $b = \begin{pmatrix} -2 \\ -6 \end{pmatrix}$ (f) $a = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$; $b = \begin{pmatrix} -4 \\ 0 \end{pmatrix}$

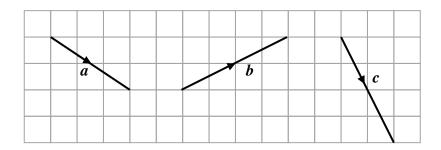
$$\mathbf{g}) \qquad \mathbf{a} = \begin{pmatrix} 0 \\ 7 \end{pmatrix}; \ \mathbf{b} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$\mathbf{g}) \qquad \mathbf{a} = \begin{pmatrix} 0 \\ 7 \end{pmatrix}; \ \mathbf{b} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \qquad \qquad \mathbf{(h)} \qquad \mathbf{a} = \begin{pmatrix} 0 \\ -6 \end{pmatrix}; \ \mathbf{b} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \qquad \qquad \mathbf{(i)} \qquad \mathbf{a} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}; \ \mathbf{b} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

(i)
$$a = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
; $b = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$

$$\mathbf{j}) \qquad \mathbf{a} = \begin{pmatrix} 0 \\ 4 \end{pmatrix}; \ \mathbf{b} = \begin{pmatrix} -4 \\ 0 \end{pmatrix}$$

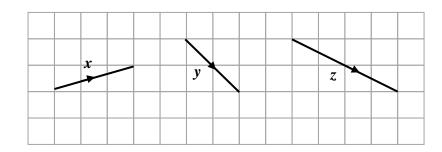
The diagram shows 3 vectors a, b and c. **3.**



- Draw diagrams on squared paper to represent: i)
- a-ba)
- **(b)**
- a-c (c) b-c (d) (a+b)-c
- a-(b-c)e)
- Calculate, correct to two decimal places: ii)

- a) |a-b| (b) |a-c| (c) |b-c| (d) |(a+b)-c|
- e) |a-(b-c)|

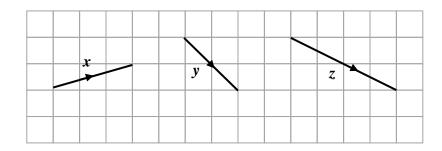
4. The diagram shows 3 vectors x, y and z.



- Draw diagrams to represent: i)
- For each resultant vector, state the components and calculate its magnitude correct to one ii) decimal place.
- a)

- x-y (b) x-z (c) y-z (d) (x-y)-z
- x-(y-z)e)

The diagram shows 3 vectors x, y and z. **5.**



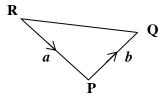
- Draw diagrams on squared paper to show: i)
- State the components of each resultant vector above and calculate its magnitude ii) correct to 3 significant figures.
- 2x + y**a**)
- **(b)**
- 3z + 2y (c) 3x + z
- (d) 2z + 4x

- **e**)

- 3x 4y (f) 3x z (g) 3y 2x (h) -3y 2z (careful!)

Exercise 4

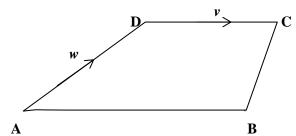
- 1. Express each of the following displacements in terms of vectors a and b.
 - ΡQ (a)
- QP **(b)**
- PR **(c)**
- RQ QR **(d) (e)**



In the diagram $\overrightarrow{AB} = 2\overrightarrow{DC}$. Express each of the following displacements in terms of 2.

vectors v and w.

- $\overrightarrow{\mathrm{CD}}$ (a)
- \overrightarrow{CA} **(b)**
- \overrightarrow{AB} (c)
- \overrightarrow{CB} **(d)**
- \overrightarrow{BD} (e)

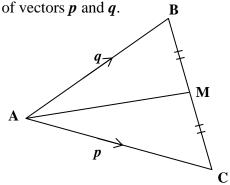


3. In the diagram 'M' is the mid – point of BC.

Express each of the following displacements in terms of vectors p and q.

- (a) \overrightarrow{CB}
- **(b)** BC
- (c) BM

(**d**) AM

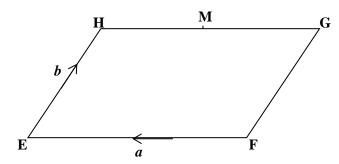


4. EFGH is a parallelogram. 'M' is the mid point of side HG.

Express each of the following displacements in terms of vectors a and b.

- (a) \overrightarrow{FG}
- **(b) GH**
- (c) \overrightarrow{GM}

(**d**) FM

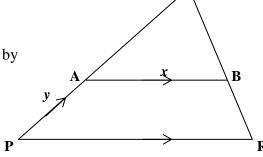


5. In the diagram AB is parallel to PR.

PA = 1 cm and PQ = 3 cm

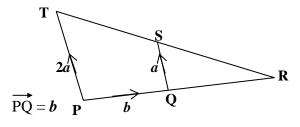
Find in terms of x and/or y the vectors represented by

(a) AQ **(b)** QB



Exercise 5

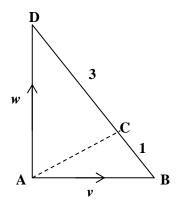
- Express in terms of a and b. 1. a)
 - PS **(i)**
- ST (ii)
- If $\overrightarrow{QR} = \frac{3}{2}\overrightarrow{PQ}$, show that RS can be expressed as **(b)** $\frac{1}{2}(2a-3b)$



- 2. Express in terms of vectors v and w.
 - a)
- \overrightarrow{BD}

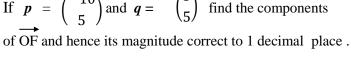
of the displacement \overrightarrow{AC} .

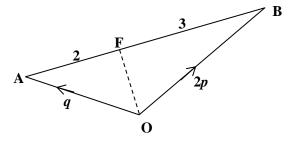
- \overrightarrow{BC} **(b)**
- (c)
- If $v = {8 \choose 0}$ and $w = {0 \choose 12}$, find the components



- **3.** Express in terms of p and q.
 - \overrightarrow{AB}

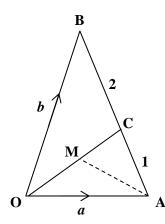
- (b) \overrightarrow{AF} (c) \overrightarrow{OF}
- If $p = {\binom{-10}{5}}$ and $q = {\binom{5}{5}}$ find the components





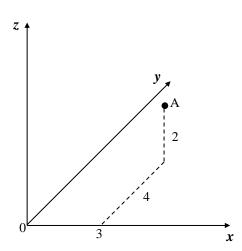
- Express in terms of a and b:-4. a)
 - \overrightarrow{AB} **(i)**
- (ii)
- (iii)
- If M is the mid-point of OC show that:b)

$$\overrightarrow{AM} = \frac{1}{6}\boldsymbol{b} - \frac{2}{3}\boldsymbol{a} = \frac{1}{6}(\boldsymbol{b} - 4\boldsymbol{a})$$

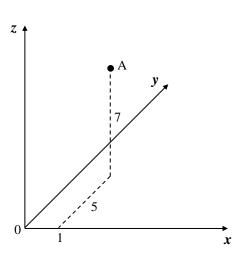


1. For each diagram, write down the coordinates of the point A and the components of the vector \overrightarrow{OA} .

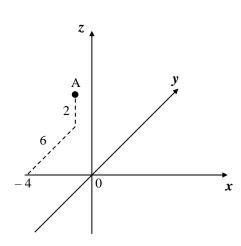
a)



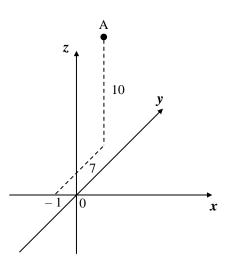
(b)



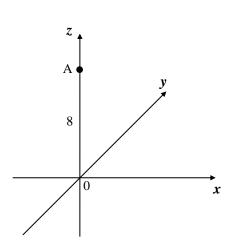
c)



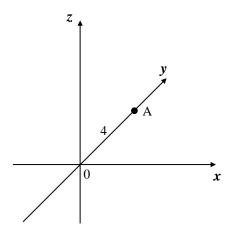
(d)

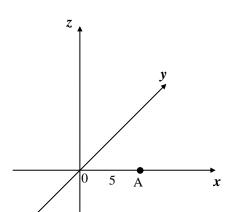


e)

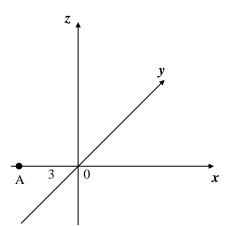


(f)

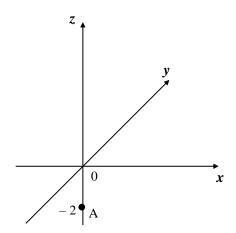




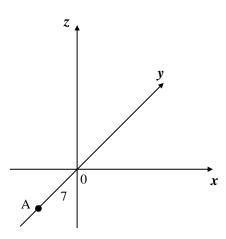
(h)



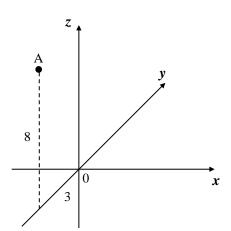
i)



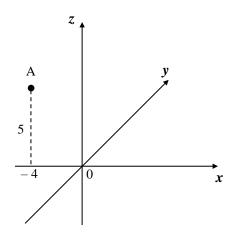
(j)



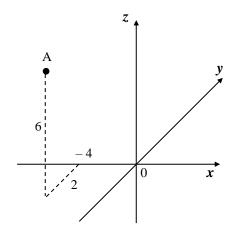
k)

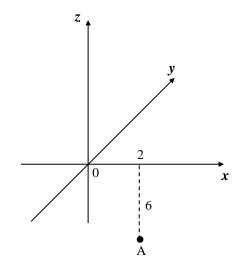


(l)

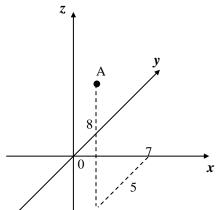


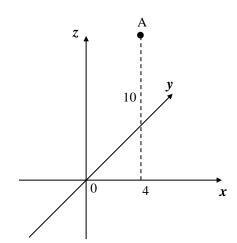
(p)



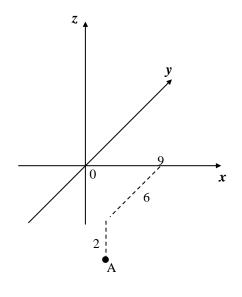


o) z .

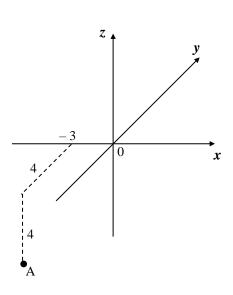




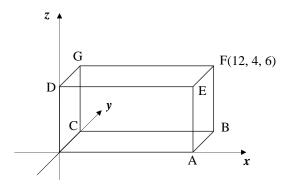
q)



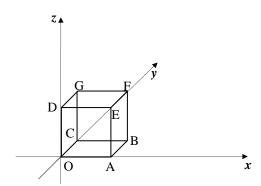
(r)



- 2. Calculate the magnitude of each of the vectors in question 1 correct to one decimal place.
- **3.** State the coordinates of each vertex of the cuboid shown in the diagram.



4. A cube of side 6 units is placed on coordinate axes as shown in the diagram. Write down the coordinates of each vertex of the cube.

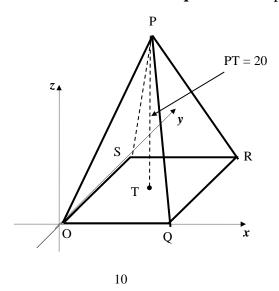


5. This shape is made up from 2 congruent trapezia and 2 congruent isosceles triangles.

From the information given in the diagram, write down the coordinates of each corner of the shape. $z \uparrow$



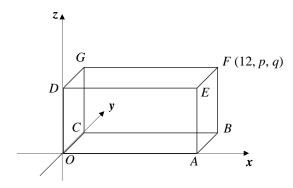
State the coordinates of each vertex of the **square based** pyramid shown in the diagram. **6.**



7. A cuboid is placed on coordinate axes as shown.

The dimensions of the cuboid are in the ratio OA : AB : BF = 4 : 1 : 2

The point F has coordinates (12, p, q) as shown.



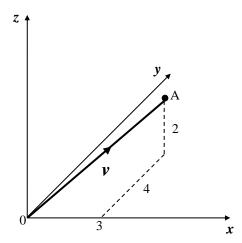
Establish the values of p and q and write down the coordinates of all the vertices of the cuboid.

- Write in component form: a) v = 2i + 3j 4k (b) w = 3i 6j + 2k8.

- c) u = 6i 3k (d) a = -3j 4k
- $\mathbf{e)} \qquad \mathbf{b} = 7\mathbf{i} 2\mathbf{j}$
- $(\mathbf{f}) \qquad c = 6\mathbf{j}$

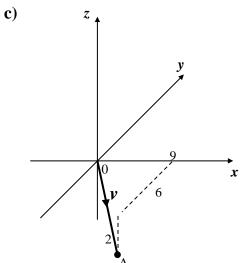
9. For each of these diagrams express v in terms of i, j and k.

a)

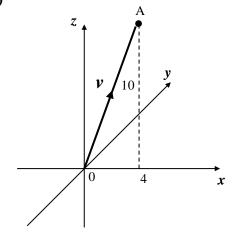


(b)



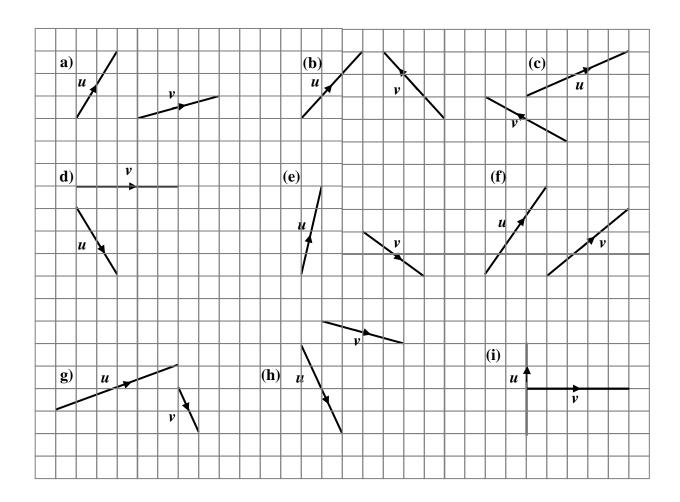


(d)



Exercise 7

- For each pair of vectors: 1.
- i) Write down the components of u and v.
- Find the components of the resultant vector $\mathbf{u} + \mathbf{v}$ ii)
- Find the components of the resultant vector $\mathbf{v} \mathbf{u}$ iii)
- Find the components of the resultant vector 2v + 3uiv)
- Find the components of the resultant vector 3v 4uv)



 \boldsymbol{u} , \boldsymbol{v} and \boldsymbol{w} are 3 vectors with components $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} -4 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ -3 \end{pmatrix}$ respectively. 2.

Find the components of the following:

a)
$$2u + 3v$$

(b)
$$3u - 6v$$

(c)
$$3w + 2v$$

(d)
$$4u - 2w$$

e)
$$-3u - 4v$$

$$-3u - 4v$$
 (f) $3w - 4u$

(g)
$$3u - 6v + 2w$$

$$3u - 6v + 2w$$
 (h) $2u + 3v - 4w$

i)
$$3u - 2v + w$$

Calculate the magnitude of each of these vectors giving answers to one decimal place: **3.**

a)
$$p = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$$
 (b) $v = \begin{pmatrix} 3 \\ 4 \\ -7 \end{pmatrix}$ (c) $r = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$ (d) $t = \begin{pmatrix} -3 \\ 0 \\ 4 \end{pmatrix}$

e)
$$u = \begin{pmatrix} 6 \\ -1 \\ -4 \end{pmatrix}$$
 (f) $q = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ (g) $a = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$ (h) $b = \begin{pmatrix} 5 \\ -12 \\ 0 \end{pmatrix}$

- u, v and w are 3 vectors with components $\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 8 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ 5 \\ 1 \end{pmatrix}$ respectively. 4.
 - i) Find the components of the following:
 - Calculate the magnitude of each resultant vector above giving answers to 1 decimal ii) place.

a)
$$2u + 3v$$
 (b) $3u - 6v$ (c) $3w + 2v$ (d) $4u - 2w$

a)
$$2u + 3v$$
 (b) $3u - 6v$ (c) $3w + 2v$ (d) $4u - 2w$
e) $-3u - 4v$ (f) $3w - 4u$ (g) $3u - 6v + 2w$ (h) $2u + 3v - 4w$

- If p = 4i + 2j 5k and q = i 3j + k, express the following in component form: 5. i)
 - Calculate the magnitude of each resultant vector above giving answers to 1 decimal ii) place.

a)
$$p+q$$
 (b) $p-q$ (c) $q-2p$ (d) $3p+q$
e) $3p-2q$ (f) $2q-3p$ (g) $3p+4q$ (h) $-2q-2p$

e)
$$3p-2q$$
 (f) $2q-3p$ (g) $3p+4q$ (h) $-2q-2p$

Calculate the magnitude of these vectors, leaving you answer a surd in its in simplest form. **6.**

a)
$$u = \begin{pmatrix} -5 \\ 3 \\ 2 \end{pmatrix}$$
 (b) $AB = \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix}$ (c) $t = 3i - 2j + 5k$

d)
$$t$$
 where point T has coordinates $(\sqrt{3}, \sqrt{5}, 2\sqrt{2})$ (e) $v = \sqrt{3}k + j - 7i$

- Given that $\mathbf{v} = 2\mathbf{k} 3\mathbf{i} + 4\mathbf{k}$, $\mathbf{u} = 5\mathbf{i} + a\mathbf{j} \mathbf{k}$ have the same magnitude, calculate the value of a if **7.** a > 0.
- A skater is suspended by three wires with forces $\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 8 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ 5 \\ -1 \end{pmatrix}$ acting on them. 8.

Calculate the resultant force and its magnitude correct to 3 significant figures where necessary.

- If $u = \begin{pmatrix} -4 \\ 1 \\ 3 \end{pmatrix}$ and $v = \begin{pmatrix} 2 \\ 2 \\ -5 \end{pmatrix}$, solve each vector equation for x. a) u + x = v (b) 2u + x = 2v (c) 2x + 3v = 4u x

- i) If $r = \begin{pmatrix} 2 \\ 6 \\ -3 \end{pmatrix}$, $s = \begin{pmatrix} 6 \\ 6 \\ -1 \end{pmatrix}$ and $t = \begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix}$, express these in component form: **10.**

- a) 2r + s (b) 3t 2s (c) (r s) + t (d) r (s + t)
- ii)

- Find: **a)** |2r+s| **(b)** |3t-2s| **(c)** |(r-s)+t| **(d)** |r-(s+t)|
- Two forces are represented by the vectors $F_1 = 2i + j 3k$ and $F_2 = i + 4k$. 11. Find the magnitude of the resultant force $F_1 + F_2$.
- Two vectors are defined as $V_1 = 4i + j + \sqrt{8}k$ and $V_2 = 8i + \sqrt{24}j + a\sqrt{3}k$ where **12.** a is a constant and <u>all</u> coefficients of i, j and k are greater than zero. Given that $|V_2| = 2|V_1|$, calculate the value of a.
- Vector \boldsymbol{a} has components $\boldsymbol{a} = \begin{pmatrix} 3 \\ -2 \\ k \end{pmatrix}$. If $|\boldsymbol{a}| = 4$, calculate the value(s) of k. **13.**
- Calculate the length of vector \mathbf{a} defined as $\mathbf{a} = 4\mathbf{i} + 2\sqrt{3}\mathbf{j} 2\sqrt{2}\mathbf{k}$. **14.**
- Vectors \mathbf{a} and \mathbf{b} are defined by $\mathbf{a} = \mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} \mathbf{j}$. **15.** Find the components of 2a - b and calculate its magnitude.

Answers

Exercise 1

1. (a)
$$\overrightarrow{AB} = u = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

(a)
$$\overrightarrow{AB} = \boldsymbol{u} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 (b) $\overrightarrow{CD} = \boldsymbol{v} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ (c) $\overrightarrow{EF} = \boldsymbol{w} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$

(c)
$$\overrightarrow{EF} = \mathbf{w} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$$

(d)
$$\overrightarrow{GH} = \boldsymbol{u} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

(d)
$$\overrightarrow{GH} = \boldsymbol{u} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
 (e) $\overrightarrow{ML} = \boldsymbol{v} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$ (f) $\overrightarrow{PQ} = \boldsymbol{w} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$

(f)
$$\overrightarrow{PQ} = w = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$

(g)
$$\overrightarrow{RS} = s = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$
 (h) $\overrightarrow{WX} = t = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ (i) $\overrightarrow{PT} = a = \begin{pmatrix} 6 \\ 1 \end{pmatrix}$

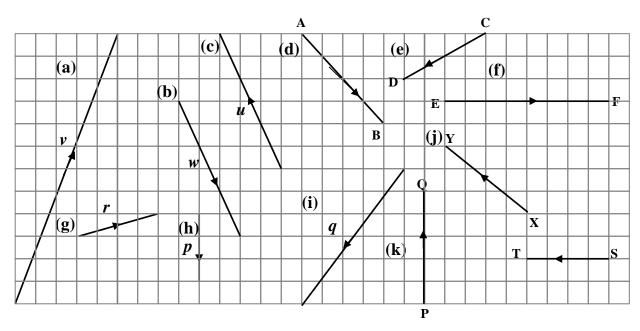
(h)
$$\overrightarrow{WX} = t = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

(i)
$$\overrightarrow{PT} = \boldsymbol{a} = \begin{pmatrix} 6 \\ 1 \end{pmatrix}$$

(j)
$$\overrightarrow{RQ} = \boldsymbol{b} = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$$
 (k) $\overrightarrow{CF} = \boldsymbol{c} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$

$$(\mathbf{k}) \qquad \overrightarrow{\mathrm{CF}} = \mathbf{c} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

2.



For question 1 **3.**

- (a)
- $\sqrt{10}$ **(b)** $2\sqrt{5}$ **(c)**
- **6 (d)** 3

- (e)
 - $2\sqrt{2}$ (f) 5 (g)
 - $2\sqrt{5}$
- $\sqrt{29}$ **(h)**

- (i)
- $\sqrt{37}$ (j) $3\sqrt{5}$
- (**k**) 5

For question 2

(a) 13 **(b)** $3\sqrt{5}$

(c) $3\sqrt{5}$

 $4\sqrt{2}$ **(d)**

 $2\sqrt{5}$ **(e)**

(f)

 $\sqrt{17}$ **(g)**

(h) 3

√61 **(i)**

5 **(j**)

(**k**) 5

4 **(l)**

4.

(a) 5 (b)

25

(c) 13

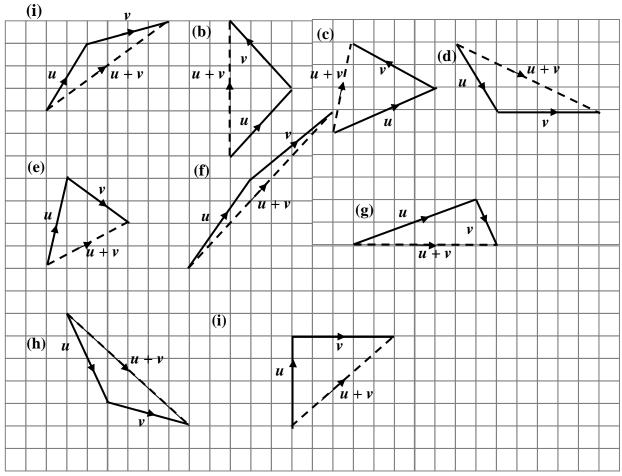
8

(d) 10 **(e)** 5

(f) 13

Exercise 2

1.



(a)
$$\binom{6}{4}$$
; $2\sqrt{13}$

(b)
$$\binom{0}{6}$$
;

(a)
$$\binom{6}{4}$$
; $2\sqrt{13}$ (b) $\binom{0}{6}$; 6 (c) $\binom{1}{4}$; $\sqrt{17}$

(d)
$$\begin{pmatrix} 7 \\ -3 \end{pmatrix}$$
; $\sqrt{58}$ (e) $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$; $2\sqrt{5}$ (f) $\begin{pmatrix} 7 \\ 7 \end{pmatrix}$; $7\sqrt{2}$

$$\binom{4}{2}$$
; $2\sqrt{5}$

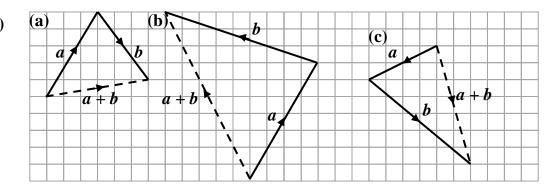
(f)
$$\binom{7}{7}$$
; 7

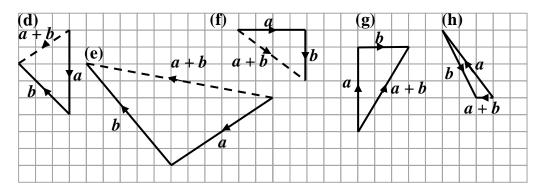
(g)
$$\binom{7}{0}$$
;

(g)
$$\binom{7}{0}$$
; 7 (h) $\binom{6}{-5}$; $\sqrt{61}$ (i) $\binom{5}{4}$; $\sqrt{41}$

$$\begin{pmatrix} 5 \\ 4 \end{pmatrix}; \sqrt{4}$$

2. **(i)**





(ii) (a)
$$\binom{6}{1}$$
; $\sqrt{37}$

(b)
$$\binom{-5}{10}$$
; $5\sqrt{5}$

(c)
$$\binom{2}{-7}$$
; $\sqrt{53}$

(a)
$$\binom{6}{1}$$
; $\sqrt{37}$ (b) $\binom{-5}{10}$; $5\sqrt{5}$ (c) $\binom{2}{-7}$; $\sqrt{53}$ (d) $\binom{-3}{-2}$; $\sqrt{13}$

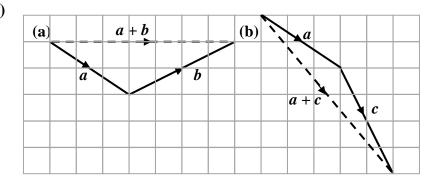
(e)
$$\begin{pmatrix} -11 \\ 2 \end{pmatrix}$$
; $5\sqrt{5}$ (f) $a = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$; 5 (g) $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$; $\sqrt{34}$ (h) $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$; 1

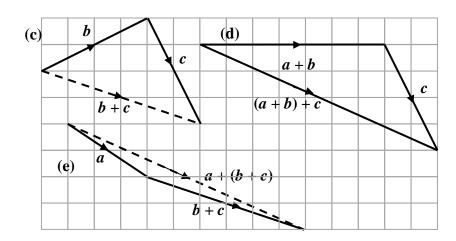
$$a = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$
; 5

$$\binom{3}{5}$$
; $\sqrt{34}$

$$(h) \qquad \binom{-1}{0}; \ 1$$

3. (i)

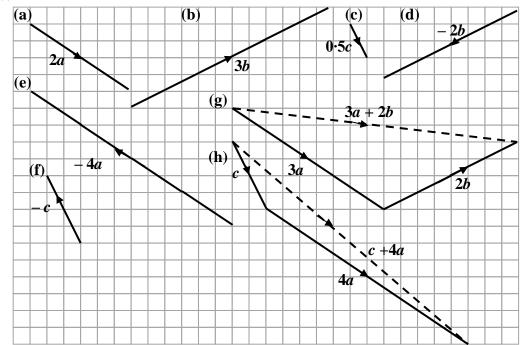




(ii) (a)
$$\binom{7}{0}$$
; 7·0 (b) $\binom{5}{-6}$; 7·8 (c) $\binom{6}{-2}$; 6·3 (d) $\binom{9}{-4}$; 9·8 (e) $\binom{9}{-4}$; 9·8

(d)
$$\binom{9}{-4}$$
; 9.8 (e) $\binom{9}{-4}$; 9.8

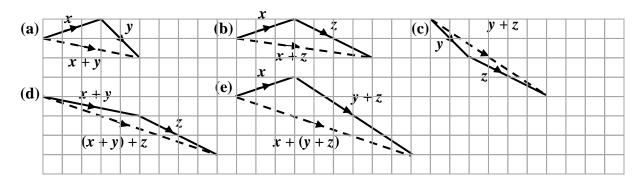
4. (i)



. (ii) (a)
$$\begin{pmatrix} 6 \\ -4 \end{pmatrix}$$
; $2\sqrt{13}$ (b) $\begin{pmatrix} 12 \\ 6 \end{pmatrix}$; $6\sqrt{5}$ (c) $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$; $\sqrt{5}$ (d) $\begin{pmatrix} -8 \\ -4 \end{pmatrix}$; $4\sqrt{5}$

(e)
$$\binom{-12}{8}$$
; $4\sqrt{13}$ (f) $\binom{-2}{4}$; $2\sqrt{5}$ (g) $\binom{17}{-2}$; $\sqrt{293}$ (h) $\binom{14}{-12}$; $2\sqrt{85}$

5. (i)



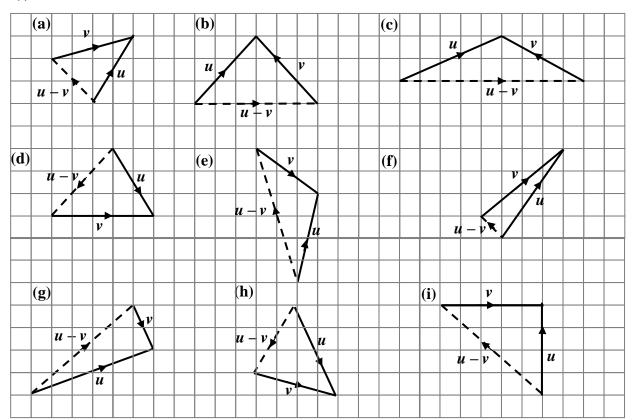
(ii) (a)
$$5.1$$
 (b) 7.1 (c) 7.2 (d) 9.5 (e) 9.5

6. (a)
$$6.3$$
 (b) 8.5 (c) 2.2 (d) 5.7

(e)
$$12.6$$
 (f) 4.5 (g) 13.0 (h) 17.7

Exercise 3

1. **(i)**



(ii) (a)
$$\begin{pmatrix} -2 \\ 2 \end{pmatrix}$$
; $2\sqrt{2}$ (b) $\begin{pmatrix} 6 \\ 0 \end{pmatrix}$; 6 (c) $\begin{pmatrix} 9 \\ 0 \end{pmatrix}$; 9 (d) $\begin{pmatrix} -3 \\ -3 \end{pmatrix}$; $3\sqrt{2}$

$$\binom{6}{0}$$
; 6

(c)
$$\binom{9}{0}$$
; 9

(d)
$$\begin{pmatrix} -3 \\ -3 \end{pmatrix}$$
; $3\sqrt{2}$

(e)
$$\begin{pmatrix} -2 \\ 6 \end{pmatrix}$$
; $2\sqrt{10}$ (f) $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$; $\sqrt{2}$ (g) $\begin{pmatrix} 5 \\ 4 \end{pmatrix}$; $\sqrt{41}$ (h) $\begin{pmatrix} -2 \\ -3 \end{pmatrix}$; $\sqrt{13}$

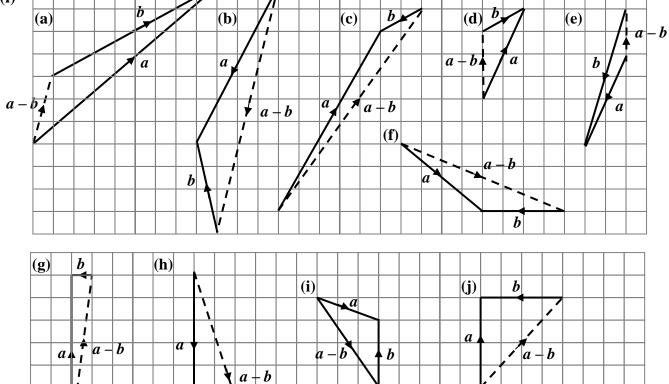
$$\begin{pmatrix} -1 \\ 1 \end{pmatrix}; \sqrt{2}$$

$$\mathbf{g}) \qquad \binom{5}{4}; \ \sqrt{4}$$

(h)
$$\begin{pmatrix} -2 \\ -3 \end{pmatrix}$$
; $\sqrt{13}$

(i)
$$\binom{-5}{4}$$
; $\sqrt{41}$

2. **(i)**



(ii) (a)
$$\binom{1}{3}$$
; 3·1 (b) $\binom{-3}{-11}$; 11·4 (c) $\binom{7}{9}$; 11·4 (d) $\binom{0}{3}$; 3

(b)
$$\binom{-3}{-11}$$
; 11.4

(c)
$$\binom{7}{9}$$
; 11.4

(d)
$$\binom{0}{3}$$
;

(e)
$$\binom{0}{2}$$
; 2

(f)
$$\binom{8}{-3}$$
; 8.5

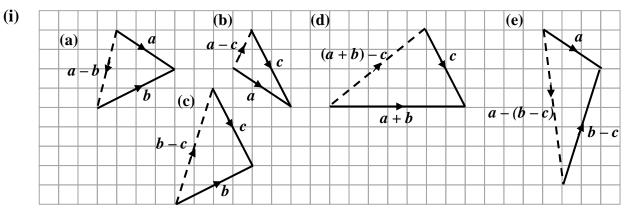
(g)
$$\binom{1}{7}$$
; 7.1

(e)
$$\binom{0}{2}$$
; 2 (f) $\binom{8}{-3}$; 8.5 (g) $\binom{1}{7}$; 7.1 (h) $\binom{4}{-11}$; 11.7

(i)
$$\binom{3}{-4}$$
; 5 (j) $\binom{4}{4}$; 5.7

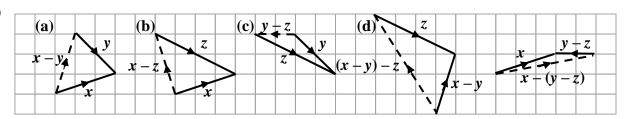
$$(\mathbf{j}) \qquad \binom{4}{4}; \ 5.7$$

3. (i



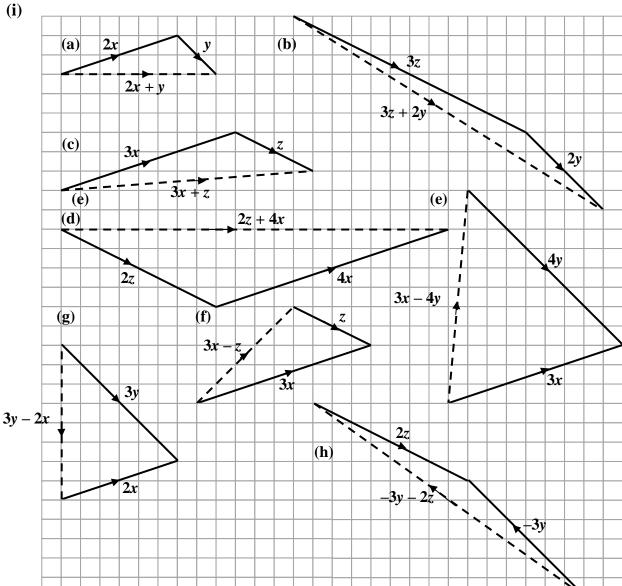
(ii) (a) 4.12 (b) 2.24 (c) 6.32 (d) 6.40 (e) 8.06

4. (i)



(ii) (a) $\binom{1}{3}$; 3·2 (b) $\binom{-1}{3}$; 3·2 (c) $\binom{-2}{0}$; 2 (d) $\binom{-3}{5}$; 5·8 (e) $\binom{5}{1}$; 5·1

5.



(ii) (a)
$$\binom{8}{0}$$
; 8.00

(a)
$$\binom{8}{0}$$
; 8.00 (b) $\binom{16}{-10}$; 18.9 (c) $\binom{13}{1}$; 13.0

(c)
$$\binom{13}{1}$$
; 13.0

(d)
$$\binom{20}{0}$$
; 20

(d)
$$\binom{20}{0}$$
; 20 (e) $\binom{1}{11}$; 11·0 (f) $\binom{5}{5}$; 7·07

(f)
$$\binom{5}{5}$$
; 7.07

(g)
$$\begin{pmatrix} 0 \\ -8 \end{pmatrix}$$
; 8.00

(g)
$$\binom{0}{-8}$$
; 8.00 **(h)** $\binom{-14}{10}$; 17.2

Exercise 4

1.

(a)

(b) $-\boldsymbol{b}$ (c) -a

(d)

a + b

(e) -(a + b)

2.

(a)

(b)

-v-w

(c) 2v **(d)**

v - w

(e)

3.

(a)

q-p (b)

p-q

(c) $\frac{1}{2}(p-q)$

w-2v

2**y**

 \boldsymbol{b}

-v

 $\frac{1}{2}a$

 $\frac{1}{2}(p+q)$ **(d)**

4.

(a)

 \boldsymbol{b}

(b) a **(c)**

 $b + \frac{1}{2}a$ **(d)**

5.

(a)

(b)

x-2y

Exercise 5

1.

(a)

(i) b+a

(ii) a-b

(b)

proof

2.

(a)

w - v (b) $\frac{1}{4}(w - v)$

(c) $\sqrt{4} (w + 3v); \binom{6}{3}$

3.

(a)

2p-q (b) $\frac{2}{5}(2p-q)$ (c) $\frac{1}{5}(4p+3q)$ $\binom{-5}{7}$; 8.6

4.

(a)

(i) b-a (ii) $\sqrt[1]{a}(b-a)$ (iii)

 $\frac{1}{3}(2a+b)$

(b) Proof

Exercise 6

1. (a)
$$(3, 4, 2); \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}$$
 (b) $(1, 5, 7); \begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix}$ (c) $(-4, 6, 2); \begin{pmatrix} -4 \\ 6 \\ 2 \end{pmatrix}$

(d)
$$(-1, 7, 10); \begin{pmatrix} -1 \\ 7 \\ 10 \end{pmatrix}$$
 (e) $(0, 0, 8); \begin{pmatrix} 0 \\ 0 \\ 8 \end{pmatrix}$ (f) $(0, 4, 0); \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}$

(g)
$$(5,0,0); \begin{pmatrix} 5\\0\\0\\0 \end{pmatrix}$$
 (h) $(-3,0,0); \begin{pmatrix} -3\\0\\0\\0 \end{pmatrix}$ (i) $(0,0,-2); \begin{pmatrix} 0\\0\\-2 \end{pmatrix}$

(j)
$$(0, -7, 0); \begin{pmatrix} 0 \\ -7 \\ 0 \end{pmatrix}$$
 (k) $(0, -3, 8); \begin{pmatrix} 0 \\ -3 \\ 8 \end{pmatrix}$ (l) $(-4, 0, 5); \begin{pmatrix} -4 \\ 0 \\ 5 \end{pmatrix}$

(m)
$$(-4, -2, 6);$$
 $\begin{pmatrix} -4 \\ -2 \\ 6 \end{pmatrix}$ (n) $(2, 0, -6);$ $\begin{pmatrix} 2 \\ 0 \\ -6 \end{pmatrix}$ (o) $(7, -5, 8);$ $\begin{pmatrix} 7 \\ -5 \\ 8 \end{pmatrix}$

(**p**)
$$(4, 0, 10);$$
 $\begin{pmatrix} 4 \\ 0 \\ 10 \end{pmatrix}$ (**q**) $(9, -6, -2);$ $\begin{pmatrix} 9 \\ -6 \\ -2 \end{pmatrix}$ (**r**) $(-3, -4, -4);$ $\begin{pmatrix} -3 \\ -4 \\ -4 \end{pmatrix}$

2. (a)
$$5.4$$
 (b) 8.7 (c) 7.5 (d) 12.2 (e) 8 (f) 4 (g) 5 (h) 3 (i) 2 (j) 7 (k) 8.5 (l) 6.4

(m)
$$7.5$$
 (n) 6.3 (o) 11.7 (p) 10.8 (q) 11 (q) 6.4

4. O(0, 0, 0); A(6, 0, 0); B(6, 6, 0); C(0, 6, 0);

D(0, 0, 6); E(6, 0, 6); F(6, 6, 6); G(0, 6, 6)

5. O(0, 0, 0); A(30, 0, 0); B(30, 14, 0); C(0, 14, 0);

D(4, 7, 8); E(26, 7, 8)

6. O(0, 0, 0); P(5, 5, 20); Q(10, 0, 0); R(10, 10, 0); S(0, 10, 0)

7. p = 3; q = 6

O(0, 0, 0); A(12, 0, 0); B(12, 3, 0); C(0, 3, 0);

D(0, 0, 6); E(12, 0, 6); F(12, 3, 6); G(0, 3, 6)

- **8.** (a) $\begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}$ (b) $\begin{pmatrix} 3 \\ -6 \\ 2 \end{pmatrix}$ (c) $\begin{pmatrix} 6 \\ 0 \\ -3 \end{pmatrix}$ (d) $\begin{pmatrix} 0 \\ -3 \\ -4 \end{pmatrix}$ (e) $\begin{pmatrix} 7 \\ -2 \\ 0 \end{pmatrix}$ (f) $\begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix}$
- 9. (a) v = 3i + 4j + 2k (b) v = 7i 5j + 8k
 - (c) v = 9i 6j 2k (d) v = 4i + 10k

Exercise 7

1. (a) (i)
$$u = \begin{pmatrix} 2 \\ 3 \end{pmatrix} v = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 6 \\ 4 \end{pmatrix}$ (iii) $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$

(iv)
$$\begin{pmatrix} 14 \\ 11 \end{pmatrix}$$
 (v) $\begin{pmatrix} 4 \\ -9 \end{pmatrix}$

(b) (i)
$$u = \begin{pmatrix} 3 \\ 3 \end{pmatrix} v = \begin{pmatrix} -3 \\ 3 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 0 \\ 6 \end{pmatrix}$ **(iii)** $\begin{pmatrix} -6 \\ 0 \end{pmatrix}$ **(iv)** $\begin{pmatrix} 3 \\ 15 \end{pmatrix}$ **(v)** $\begin{pmatrix} -21 \\ -3 \end{pmatrix}$

(c) (i)
$$u = \begin{pmatrix} 5 \\ 2 \end{pmatrix} v = \begin{pmatrix} -4 \\ 2 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$ (iii) $\begin{pmatrix} -9 \\ 0 \end{pmatrix}$ (iv) $\begin{pmatrix} 7 \\ 10 \end{pmatrix}$ (v) $\begin{pmatrix} -32 \\ -2 \end{pmatrix}$

(d) (i)
$$u = \begin{pmatrix} 2 \\ -3 \end{pmatrix} v = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 7 \\ -3 \end{pmatrix}$ (iii) $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$ (iv) $\begin{pmatrix} 16 \\ -9 \end{pmatrix}$ (v) $\begin{pmatrix} 7 \\ 12 \end{pmatrix}$

(e) (i)
$$u = \begin{pmatrix} 1 \\ 4 \end{pmatrix} v = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ (iii) $\begin{pmatrix} 2 \\ -6 \end{pmatrix}$ (iv) $\begin{pmatrix} 9 \\ 8 \end{pmatrix}$ (v) $\begin{pmatrix} 5 \\ -22 \end{pmatrix}$

(f) (i)
$$u = \begin{pmatrix} 3 \\ 4 \end{pmatrix} v = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 7 \\ 7 \end{pmatrix}$ (iii) $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ (iv) $\begin{pmatrix} 17 \\ 18 \end{pmatrix}$ (v) $\begin{pmatrix} 0 \\ -7 \end{pmatrix}$

(g) (i)
$$u = \begin{pmatrix} 6 \\ 2 \end{pmatrix} v = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 7 \\ 0 \end{pmatrix}$ (iii) $\begin{pmatrix} -5 \\ -4 \end{pmatrix}$ (iv) $\begin{pmatrix} 20 \\ 2 \end{pmatrix}$ (v) $\begin{pmatrix} -21 \\ -14 \end{pmatrix}$

(h) (i)
$$u = \begin{pmatrix} 2 \\ -4 \end{pmatrix} v = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 6 \\ -5 \end{pmatrix}$ (iii) $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ (iv) $\begin{pmatrix} 14 \\ -14 \end{pmatrix}$ (v) $\begin{pmatrix} 4 \\ 13 \end{pmatrix}$

(i) (i)
$$u = \begin{pmatrix} 0 \\ 4 \end{pmatrix} v = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 5 \\ 4 \end{pmatrix}$ (iii) $\begin{pmatrix} 5 \\ -4 \end{pmatrix}$ (iv) $\begin{pmatrix} 10 \\ 12 \end{pmatrix}$ (v) $\begin{pmatrix} 15 \\ -16 \end{pmatrix}$

2. (a)
$$\binom{-8}{21}$$
 (b) $\binom{30}{-21}$ (c) $\binom{-11}{1}$ (d) $\binom{10}{18}$

(e)
$$\begin{pmatrix} 10 \\ -29 \end{pmatrix}$$
 (f) $\begin{pmatrix} -11 \\ -21 \end{pmatrix}$ (g) $\begin{pmatrix} 28 \\ -27 \end{pmatrix}$ (h) $\begin{pmatrix} -4 \\ 33 \end{pmatrix}$ (i) $\begin{pmatrix} 13 \\ -4 \end{pmatrix}$

4. (i) (a)
$$\begin{pmatrix} 16 \\ 30 \\ 8 \end{pmatrix}$$
 (b) $\begin{pmatrix} -18 \\ -39 \\ 12 \end{pmatrix}$ (c) $\begin{pmatrix} 2 \\ 31 \\ -3 \end{pmatrix}$ (d) $\begin{pmatrix} 12 \\ 2 \\ 18 \end{pmatrix}$

(b)
$$\begin{pmatrix} -18 \\ -39 \\ 12 \end{pmatrix}$$

$$\begin{array}{ccc}
\mathbf{(c)} & \begin{pmatrix} 2 \\ 31 \\ -3 \end{pmatrix}
\end{array}$$

$$\begin{array}{c}
\textbf{(d)} & \begin{pmatrix} 12 \\ 2 \\ 18 \end{pmatrix}
\end{array}$$

(e)
$$\begin{pmatrix} -22 \\ -41 \\ -12 \end{pmatrix}$$

(f)
$$\begin{pmatrix} -14 \\ 3 \\ -19 \end{pmatrix}$$

(e)
$$\begin{pmatrix} -22 \\ -41 \\ -12 \end{pmatrix}$$
 (f) $\begin{pmatrix} -14 \\ 3 \\ -19 \end{pmatrix}$ (g) $\begin{pmatrix} -22 \\ -29 \\ 10 \end{pmatrix}$ (h) $\begin{pmatrix} 24 \\ 10 \\ 12 \end{pmatrix}$

(h)
$$\begin{pmatrix} 24 \\ 10 \\ 12 \end{pmatrix}$$

(g)
$$37.7$$

5. (i) (a)
$$\begin{pmatrix} 5 \\ -1 \\ -4 \end{pmatrix}$$
 (b) $\begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$ (c) $\begin{pmatrix} -7 \\ -7 \\ 11 \end{pmatrix}$ (d) $\begin{pmatrix} 13 \\ 3 \\ -14 \end{pmatrix}$

(b)
$$\begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$

$$\begin{pmatrix}
-7 \\
-7 \\
11
\end{pmatrix}$$

$$\begin{array}{c}
\mathbf{(d)} & \begin{pmatrix} 13 \\ 3 \\ -14 \end{pmatrix}
\end{array}$$

(e)
$$\begin{pmatrix} 10 \\ 12 \\ -17 \end{pmatrix}$$

(e)
$$\begin{pmatrix} 10 \\ 12 \\ -17 \end{pmatrix}$$
 (f) $\begin{pmatrix} -10 \\ -12 \\ 17 \end{pmatrix}$ (g) $\begin{pmatrix} 16 \\ -6 \\ -11 \end{pmatrix}$ (h) $\begin{pmatrix} -10 \\ 2 \\ 8 \end{pmatrix}$

$$\begin{pmatrix}
16 \\
-6 \\
-11
\end{pmatrix}$$

$$(h) \qquad \begin{pmatrix} -10 \\ 2 \\ 8 \end{pmatrix}$$

6. (a)
$$\sqrt{38}$$

(b)
$$3\sqrt{3}$$

(c)
$$\sqrt{38}$$

(e)
$$\sqrt{53}$$

7.
$$a = \sqrt{3}$$

8.
$$\begin{pmatrix} 4 \\ 16 \\ 3 \end{pmatrix}$$
; 16.8

9. (a)
$$\begin{pmatrix} 6 \\ 1 \\ -8 \end{pmatrix}$$
 (b) $\begin{pmatrix} 12 \\ 2 \\ -16 \end{pmatrix}$ (c) $\begin{pmatrix} \frac{-22}{3} \\ \frac{-2}{3} \\ -1 \end{pmatrix}$

$$(b) \qquad \begin{pmatrix} 12 \\ 2 \\ -16 \end{pmatrix}$$

(b)
$$\begin{pmatrix} -24 \\ -12 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix}
-8 \\
0 \\
-1
\end{pmatrix}$$

10. (i) (a)
$$\begin{pmatrix} 10 \\ 18 \\ -7 \end{pmatrix}$$
 (b) $\begin{pmatrix} -24 \\ -12 \\ 5 \end{pmatrix}$ (c) $\begin{pmatrix} -8 \\ 0 \\ -1 \end{pmatrix}$ (d) $\begin{pmatrix} 0 \\ 0 \\ -3 \end{pmatrix}$

11.
$$\begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$$
; $\sqrt{11}$

12.
$$a = 2$$

13.
$$k = \pm \sqrt{3}$$

15.
$$\begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix}$$
; $\sqrt{26}$ or 5.1