

Sine Rule

Formula. This formula is given on the National 5 Mathematics exam paper.							
Sine rule	a = b = c						
	$\sin A \sin B \sin C$						

Where a, b and c are the lengths of the sides of the triangle, and A, B and C are the angles in the triangle. Side *a* is opposite angle *A* etc.

Important: to answer a question you do not use the formula as it is written. You only need the first two 'bits': $\frac{a}{\sin A} = \frac{b}{\sin B}$

Example 1 - sine rule for lengths Find the length x in this triangle.

Solution

x cm is opposite 35°, so use a = x and A = 35°9cm is opposite 80°, so use b = 9 and B = 80°

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$

$$\frac{x}{\sin 35} = \frac{9}{\sin 80}$$

$$x = \frac{9 \sin 35}{\sin 80}$$
(moving the sin35 to the other side)
$$x = 5 \cdot 241822996...$$

$$x = 5 \cdot 2 \operatorname{em} (1 \text{ d.p.})$$

9cm

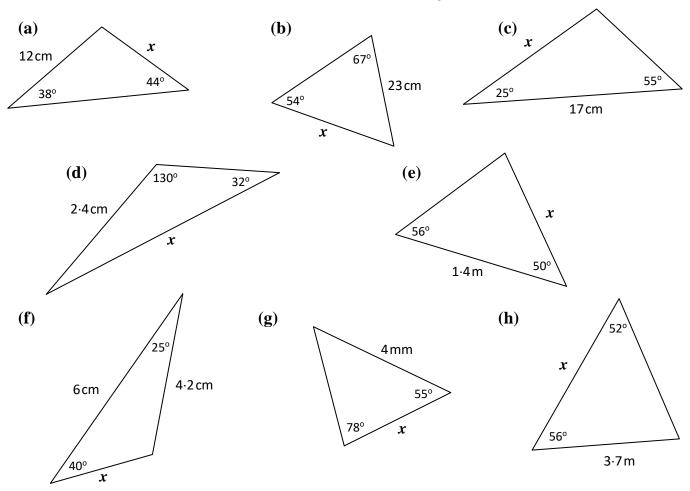
35°

х

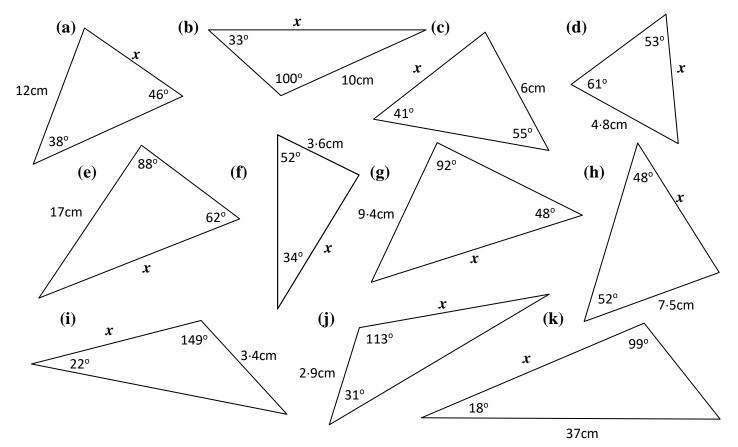
80

If there are two triangles in the diagram, you have to use the sine rule (or cosine rule, or SOH CAH TOA) twice. These questions will normally have 4-6 marks.

1. Use the *sine rule* to calculate the <u>side</u> marked x in each triangle below.



2. Use the sine rule to calculate the length of the side marked x in each of the triangles below.



Example 2 – sine rule for angles Calculate the size of angle x° in this triangle

Solution

 x° is opposite 15.8°, so use a = 15.8 and $A = x^{\circ}$ 76° is opposite 18.2m, so use b = 18.2 and $B = 76^{\circ}$

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$

$$\frac{15 \cdot 8}{\sin x} = \frac{18 \cdot 2}{\sin 76}$$

$$15 \cdot 8 \sin 76 = 18 \cdot 2 \sin x$$

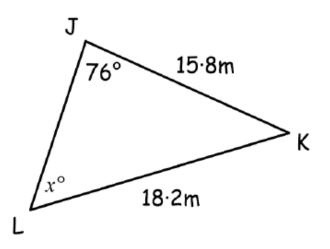
$$\sin x = \frac{15 \cdot 8 \sin 76}{18 \cdot 2}$$

$$\sin x = 0 \cdot 842344...$$

$$x = \sin^{-1} 0 \cdot 842344...$$

$$x = 57 \cdot 3885...$$

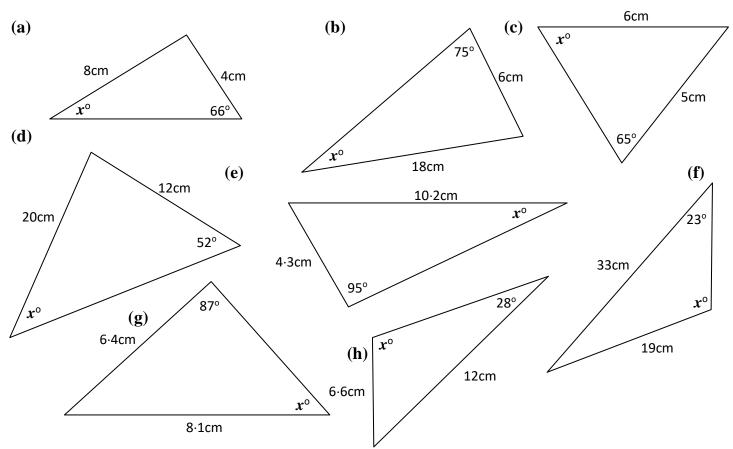
$$x = \frac{57 \cdot 4^{\circ}}{18 \cdot 2} (1 \text{ d.p.})$$

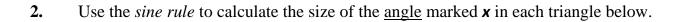


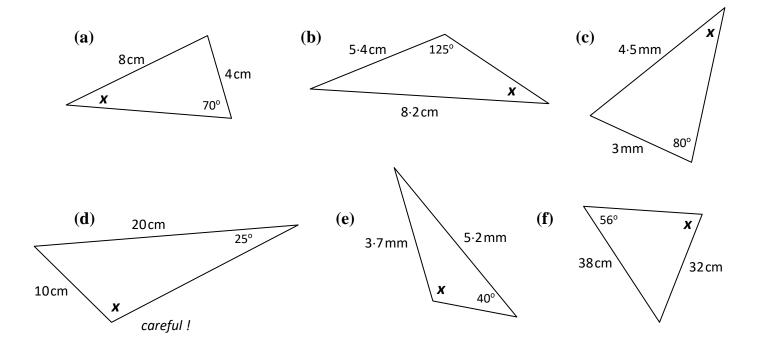
(cross-multiplying)

(dividing by $18 \cdot 2$ to make $\sin x$ the subject)

1. Use the sine rule to calculate the length of the angle marked x° in each of the triangles below.







The Cosine Rule

Formula. This formula is given on the National 5 Mathematics exam paper.								
Cosine rule:	$a^2 = b^2 + c^2 - 2bc\cos A$	or	$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$					

where *A* is the angle <u>between</u> the two sides *b* and *c*, and *a* is the length opposite angle *A*. You use the first version of the formula to calculate a *length*, and the second to calculate an *angle*.

To find a **length** using the cosine rule, you <u>must know</u> the other two sides and the angle in between. It does not matter which side is called b and which is called c.

Example 1

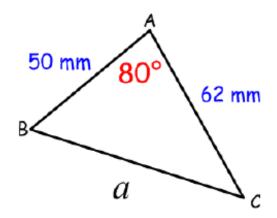
Find the length of *a* in this diagram

Solution

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

= 50² + 62² - 2×50×62×cos80
= 6344 - 6200 cos80
= 5267 · 3881298...
$$a = \sqrt{5267 \cdot 388...}$$

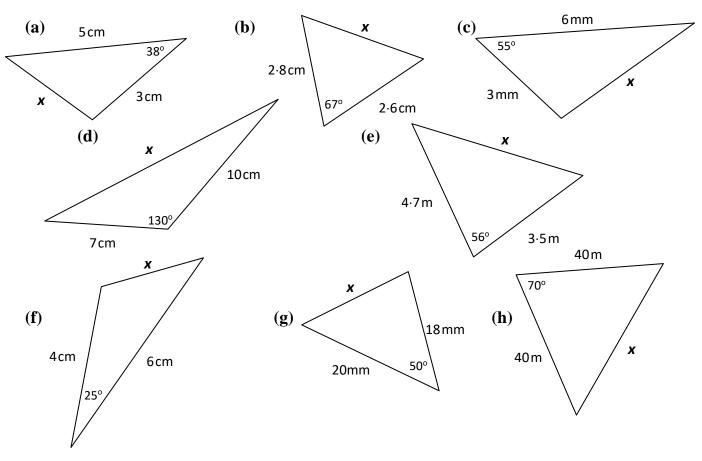
= 72 · 5767...
= 72 · 6mm (1 d.p.)



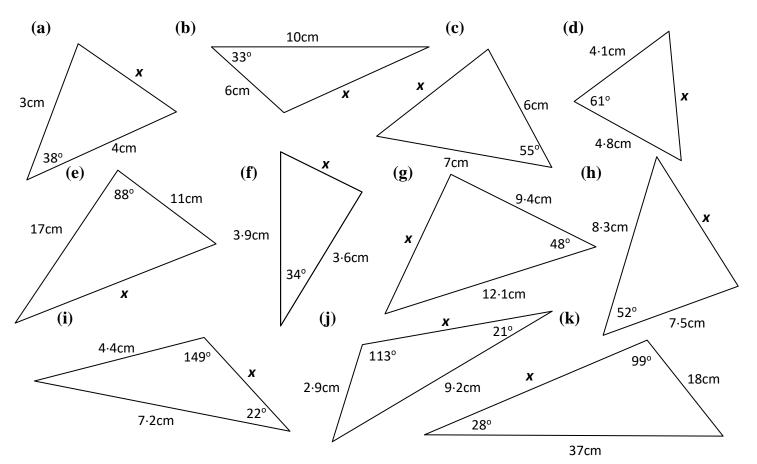
To find an **angle** using the cosine rule, you <u>must know</u> the lengths of all three sides to be able to use this formula. To find an angle, you use the second version of the formula.

In the formula $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$, it is crucial that <u>a must be the side opposite the angle</u> you are finding. It does not matter which way around b and c go.

1. Use the *cosine rule* to calculate the <u>side</u> marked **x** in each triangle below.



2. Use the cosine rule to calculate the length of the side marked **x** in each of the triangles below.



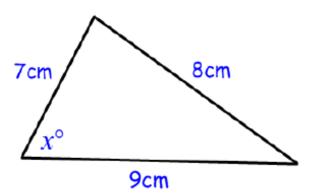
 $\frac{\text{Example } 2 - \text{finding an angle}}{\text{Find the size of angle } x^{\circ} \text{ in this diagram}}$

Solution

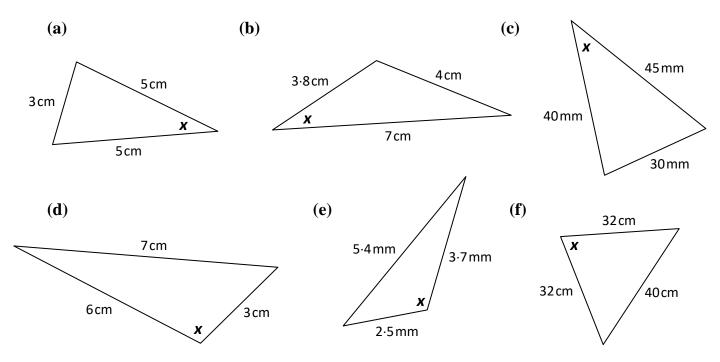
Length 'a' has to be the side opposite the angle we are finding, so a = 8.

It does not matter which way around b and c go, so we will say b = 7 and c = 9.

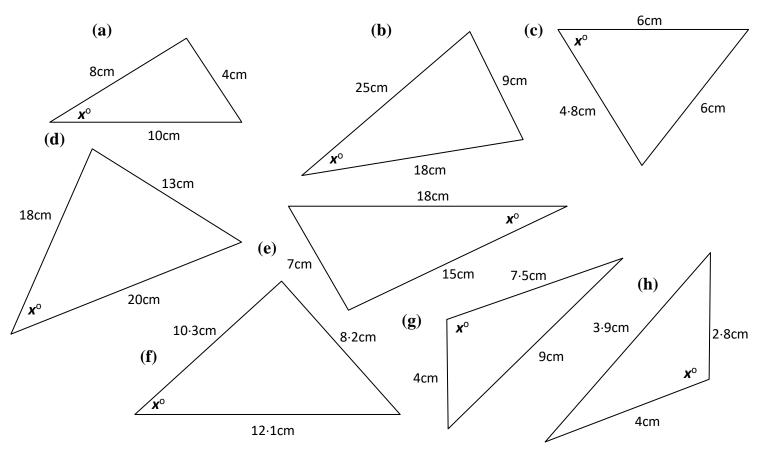
$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$
$$\cos x = \frac{7^{2} + 9^{2} - 8^{2}}{2 \times 7 \times 9}$$
$$= \frac{66}{126}$$
$$x = \cos^{-1}\left(\frac{66}{126}\right)$$
$$= 58 \cdot 411864...$$
$$= 58 \cdot 4^{\circ} (1 \text{ d.p.})$$



1. Use the 2^{nd} form of the *cosine rule* to calculate the size of the <u>angle</u> marked **x** below.



2. Use the cosine rule to calculate the angle marked x° in each of the triangles below.



Choosing the Formula

Use the key words in the question to decide if you are being asked to calculate the area, an angle, or a length. Use the diagram to see what information you are being given.

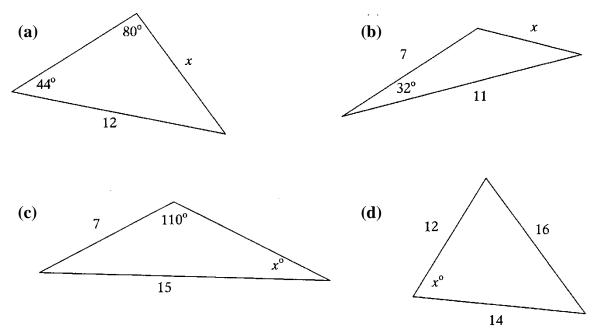
Keywords: what is the question asking you to find?

- **AREA:** use $A = \frac{1}{2}ab\sin C$
- ANGLE:
 - if you know all three sides use the cosine rule for angles $\cos A = \frac{b^2 + c^2 a^2}{2bc}$
 - if you only know two sides, use the sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
- LENGTH (distance, how far, how long, etc):
 - if you know two sides and the angle in between, use the cosine rule $(a^2 = b^2 + c^2 2bc \cos A)$
 - if you know at least two angles and at least one other length, use the sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

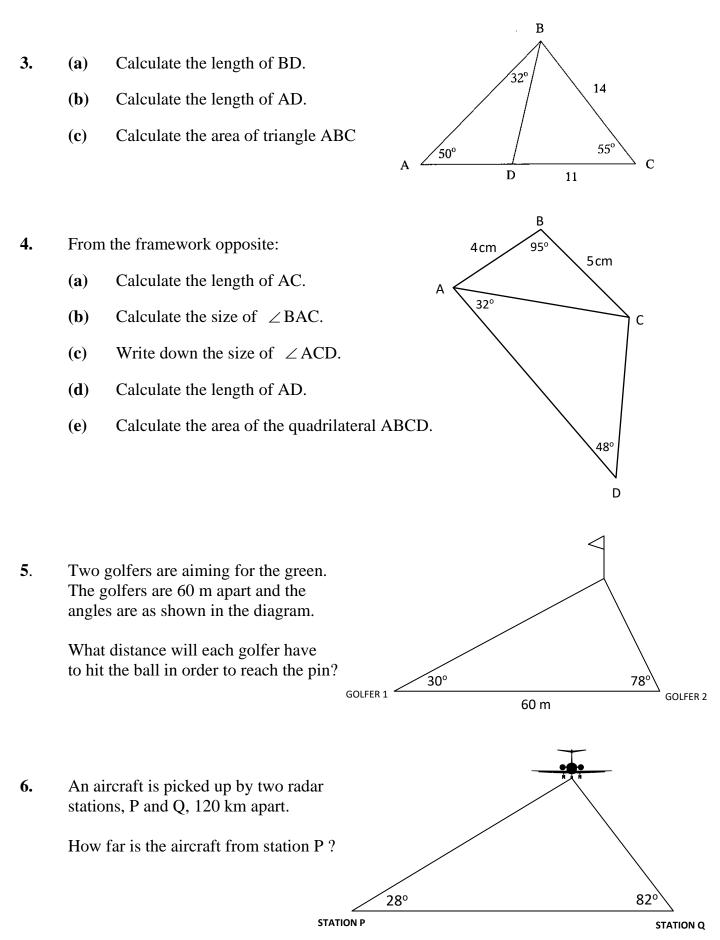
As a rough rule, if you know (or can work out) all of the angles in the triangle, you are probably going to use the sine rule.

Exercise 5

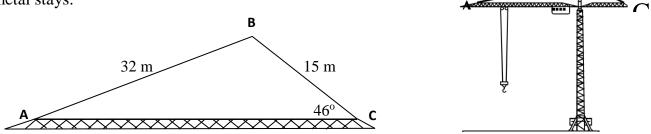
1. Calculate the value of *x* in each triangle below.



2. Calculate the area of the triangle with sides measuring 12 cm, 14 cm and 20 cm.



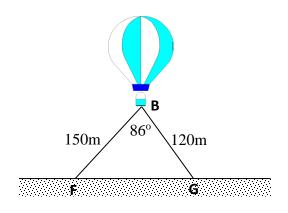
7. A large crane is being used in the construction of a block of flats. The crossbeam is supported by two metal stays.

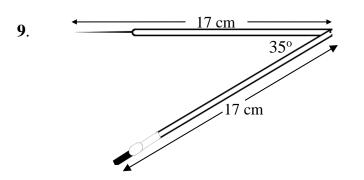


The length of AB is 32 m and the length of BC is 15 m. \angle BCA is 46°. Calculate the size of \angle BAC and the length of the crossbeam AC.

8. A hot air balloon B is fixed to the ground at F and G by 2 ropes 120m and 150 m long.

If \angle FBG is 86°, how far apart are F and G?





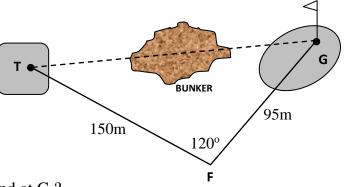
10. During a golf match, Ian discovers that he has forgotten his sand wedge, so to avoid the bunker he plays a shot from T to F and then from F to G.

His opponent Fred decides to play directly from T to G.

How far will Fred need to hit his shot to land at G?

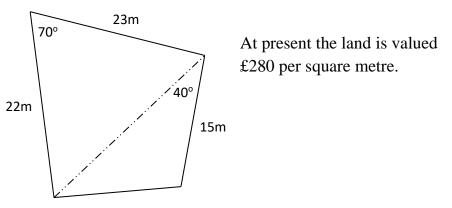
A set of compasses is shown where the angle between the arms is set at 35°

Calculate the diameter of the circle which could be drawn with the arms in this position.



Mixed Exercise

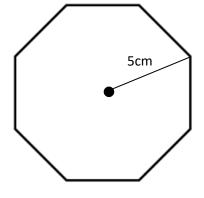
1. The sketch below shows a plot of land purchased to build a house on.



Calculate the value of the plot shown to the nearest $\pounds 10$.

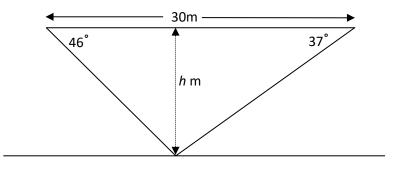
2. The distance from the centre of a regular octagon to one of its vertexes is 5 cm.

Calculate the area of the octagon.

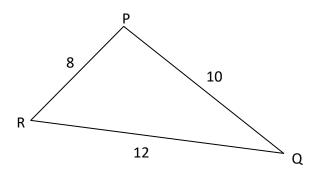


3. Two security cameras are positioned on a beam in a warehouse 30 metres apart. One camera has an angle of depression of 37° and the other camera has an angle of depression of 46°.

Calculate the height, h metres, of the beam above the ground.

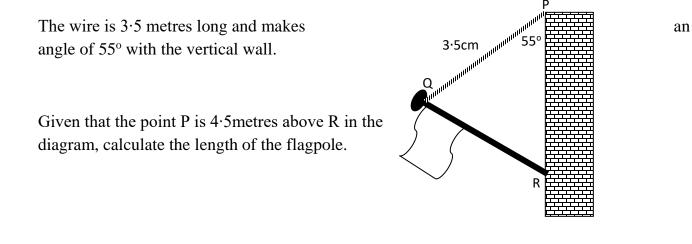


4. Triangle PQR has sides with lengths, in centimetres, as shown.

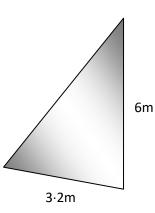


Show clearly that $\cos PQR = 0.75$.

5. A flagpole is attached to a wall and is supported by a wire PQ as shown in the diagram.

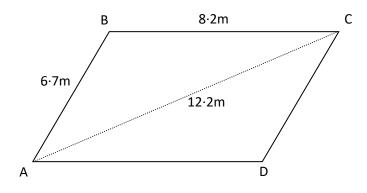


6. A triangular sail designed for a racing yacht is shown below. Two of its edges measure 6 metres and 3.2 metres.

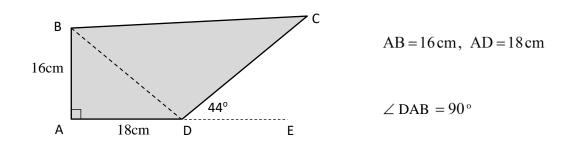


Given that the sail has a **perimeter** of 15.5 metres, calculate the **area** of the sail.

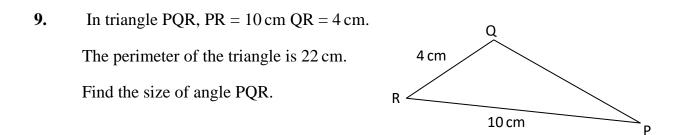
7. A sketch of Lee's garden is shown below.



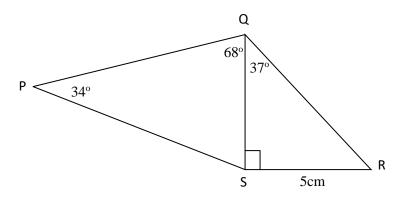
- (a) Calculate the size of angle ABC.
- (b) Hence, or otherwise, calculate the area of the garden.
- 8. The diagram below shows a steel plate ABCD.



- (a) Calculate the length of BD correct to 1 decimal place.
- (b) Find the size of angle BDC correct to the nearest degree.
- (c) Hence calculate the length of BC given that DC = 25 cm.

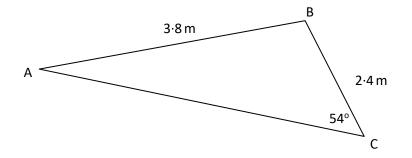


10. In the diagram shown SR = 5cm, angle $SQR = 37^{\circ}$, angle $QPS = 34^{\circ}$ and angle $PQS = 68^{\circ}$.

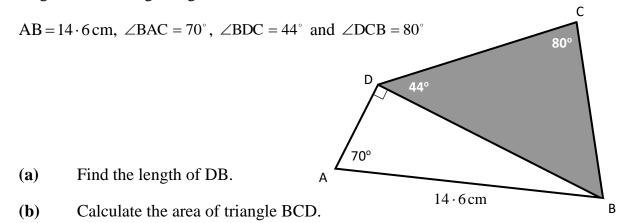


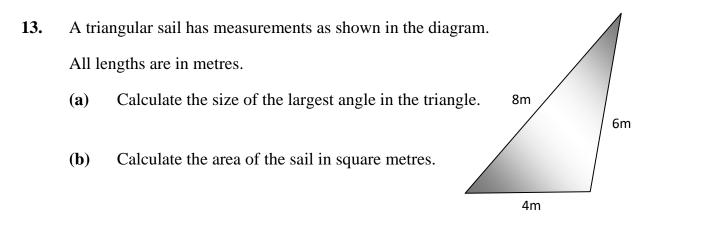
Calculate the length of PS.

11. Calculate the size of angle BAC in this triangle.



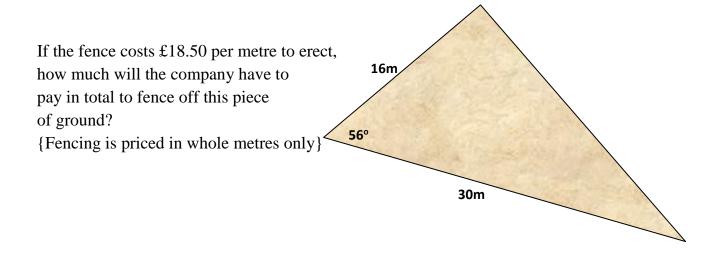
In the diagram ABCD represents a steel framework with BCD being a triangular steel plate.
 Angle ADB is a right angle.



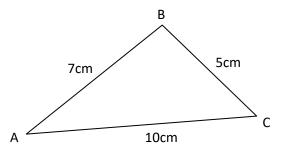


14. A building company has to fence off a triangular piece of waste ground.

The plan of the ground is shown below. All lengths are in metres.



15. (a) Calculate the value of cos ABC in this triangle.



(b) Without actually calculating the size of the angle a pupil was able to say that angle ABC was obtuse.

By referring to your answer in (a), explain why the pupil was able to do this.

Answers

Exercise 1

i)

2·9 cm

1.	a)	10.6cm	(b)	26·2cm	(c)	14·1cm	(d)	3.5cm
	e)	1·2m	(f)	2·8cm	(g)	3mm	(h)	4·5m
2.	a)	10·3 cm	(b)	18·1 cm	(c)	7.5 cm	(d)	5·3 cm
	e)	19·2 cm	(f)	5·1 cm	(g)	12.6 cm	(h)	8·0 cm
	i)	4·7 cm	(j)	2.5 cm	(k)	33·4 cm		
Exerc	cise 2							
1.	a)	27·2°	(b)	18·8º	(c)	49·0°	(d)	28·2°
	e)	24·8°	(f)	137·3°	(g)	52·1°	(h)	121°
2.	a)	28°	(b)	32·6°	(c)	41°	(d)	122·3°
	e)	115·4º	(f)	79·9°				
Exerc	cise 3							
1.	a)	3·2cm	(b)	3cm	(c)	4·9mm	(d)	15·5cm
	e)	4m	(f)	2.9cm	(g)	16·2mm	(h)	45·9m
2.	a)	2.5 cm	(b)	5·9 cm	(c)	6·1 cm	(d)	4·6 cm
4.								
	e)	19·9 cm	(f)	$2 \cdot 2 \text{ cm}$	(g)	9·1 cm	(h)	7 cm

7.5 cm

(j)

(**k**) 29.9 cm

1.	a)	34·9°	(b)	26·9°	(c)	40.8°		
	d)	96·4°	(e)	119·9°	(f)	77·4°		
2.	a)	22·3°	(b)	15·3°	(c)	66·4°	(d)	39·6°
	e)	$22 \cdot 2^{\circ}$	(f)	$42 \cdot 0^{\circ}$	(g)	98·4°	(h)	67·3°

Exercise 5

- 1. a)
 8.5 (b)
 6.3 (c)
 26° (d)
 75.5°

 2.
 82.6 cm^2 42.6 cm^2 82.6 cm^2 82.6 cm^2 82.6 cm^2
- 3. a)11.8(b)8.2(c)1104. a)6.7 cm(b) 48° (c) 100° (d)8.9 cm
 - e) $25 \cdot 8 \text{cm}^2$
- **5.** Golfer 1: 61·7m Golfer 2: 31·5m
- **6.** 126·km
- **7.** 19.7°; 40.5m
- **8.** 185.4m
- **9.** 20.4cm
- **10.** 214m

Mixed Exercise

- **1.** £101 390
- **2.** 70.7 cm^2
- **3.** 13m
- 4. Proof
- **5.** 3.8m
- **6.** 9.46m²
- **7. a**) 110° (**b**) $51.6m^2$
- **8.** a) 24·1cm (b) 94° (c) 36cm
- **9.** 108°
- **10.** 11cm
- **11.** 30.7°
- **12.** a) 13.7cm (b) 54.7cm²
- **13. a**) 104·5° (**b**) 11·6m²
- **14.** £1313.50
- **15.** a) -13/35 [or equivalent] (b) cosine is negative