National 5 Learning Checklist - Applications

Topic	Skills	Extra Study / Notes		
Trigonometry				
Triangle	Label Triangle b a C B			
Area of a Triangle	$A = \frac{1}{2}ab\sin C$			
Sine Rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Use Sine Rule to find a side Use Sine Rule to find an angle. NB: $\sin A =$ $A = \sin^{-1}()$			
Coosine Rule	Use $a^2 = b^2 + c^2 - 2bc\cos A$ to find a side Use $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ to find an angle NB: $\cos A =$ $A = \cos^{-1}()$			
Bearings	Use knowledge of bearings to solve trig problems. Including knowledge of Corresponding, Alternate and Supplementary angles.			
Vectors				
2D Line Segments	Add or subtract 2D line Segments • Vectors end-to-end • Arrows in same direction			
3D Vectors	Determine coordinates of a point from a diagram representing a 3D object			
Vector Components	Add and Subtract 2D and 3D vector components. $\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} \mathbf{a} + \mathbf{b} = \begin{pmatrix} 1+3 \\ 1+2 \\ 4+5 \end{pmatrix}$			
	Multiply vector components by a scalar $2\mathbf{a} = 2 \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 8 \end{pmatrix}$			
	Find the magnitude of a 2D or 3D vector: For vector $\begin{pmatrix} x \\ y \end{pmatrix}$ magnitude = $\sqrt{x^2 + y^2}$ For vector $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ magnitude = $\sqrt{x^2 + y^2 + z^2}$			
Percentages				
Compound Interest	Calculate multiplier from percentage: e.g. 5% increase 100% + 5% = 105% = 1.05 Use multiplier to calculate compound interest / depreciation.			
	e.g. £500 with 5% interest for 3 years 1.05³ x 500			

www.zetamaths.com © Zeta Maths Limited

Percentages Contd.		
Percentage increase/decrease	% Increase/decrease = $\frac{difference}{original} \times 100$	
Reverse the Change	Find initial amount. e.g. Watch reduced by 30% to £42. 70% = £42, 1% = £0.60, 100% = £60 or 42 ÷ 0.7 = £60	
Fractions		
Add and Subract Fractions	Find a common denominator $\frac{2}{3} + \frac{4}{5} = \frac{10}{15} + \frac{12}{15}$	
Add and Subract Mixed Numbers	Add or subtract whole numbers, or make an improper fraction:	
	$2\frac{2}{3} + 3\frac{4}{5} = 5\frac{10}{15} + \frac{12}{15} \text{ or } 2\frac{2}{3} + 3\frac{4}{5} = \frac{8}{3} + \frac{19}{5}$	
Multiply Fractions	Multiply top with top, bottom with bottom: $\frac{3}{2} \times \frac{4}{5} = \frac{12}{25}$	
Multiply Mixed Numbers	7 5 35 Make top heavy fraction then as above:	
	$3\frac{3}{7} \times \frac{4}{5} = \frac{23}{7} \times \frac{4}{5} = \frac{92}{35}$	
Divide Fractions	Invert second fraction and multiply: $ \frac{6}{7} \div \frac{2}{3} = \frac{6}{7} \times \frac{3}{2} = \frac{18}{10} = \frac{9}{5} $	
Statistics	1	
Comparing data	Calculate the mean: $\overline{x} = \frac{sum \cdot of \cdot data}{number \cdot of \cdot terms}$	
	Find five figure summary: L = lowest term, Q1 = lower quartile, Q2 = Median, Q3 = upper quartile, h = highest term	
	Interquartile range: IQR = Q3 – Q1 middle 50% of data	
	Semi-Interquartile range: $SIQR = \frac{Q3 - Q1}{2}$	
	Calculate Standard Deviation: $s = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}} \text{ or } s = \sqrt{\frac{\sum (x - \overline{x})^2}{n-1}}$	
	Know that IQR, SIQR and standard deviation are a measure of the <i>spread</i> of data. Lower value means more <i>consistent</i> data.	
Line of Best Fit	Use knowledge of straight line to find the equation of a line of best fit: $y = mx + c$ or $y - b = m(x - a)$	
	Use equation of line of best fit to find estimate for new value. Usually do so by substituting value for <i>x</i> into equation.	
	Draw best fitting line: In line with direction of points Roughly the same number of points above and below line.	

www.zetamaths.com © Zeta Maths Limited