

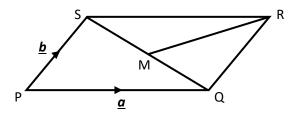



## Show all working – Calculator required for 1(c) only.

**Marks** 

- 1. The diagram shows 3 vectors  $\underline{a}$ ,  $\underline{b}$  and  $\underline{c}$ .
  - a) Write down the components of the vectors  $\underline{a}$ ,  $\underline{b}$  and  $\underline{c}$ .




- **b)** Using squared paper, draw diagrams to represent:
  - i)  $\underline{a} + \underline{b}$
- (ii)  $\underline{a} \underline{c}$
- (iii)  $\underline{b} + \underline{c}$
- (iv)  $(\underline{a} + \underline{b}) + \underline{c}$
- (8)

c) For the resultant vectors in (i) and (iii) from part (b), state the components and calculate the magnitude for each one correct to one decimal place.

**(4)** 

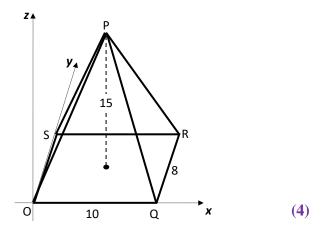
**2.** PQRS is a parallelogram.

M is the mid-point of SQ.



 $\overrightarrow{PQ}$  is represented by vector  $\underline{\boldsymbol{a}}$  and  $\overrightarrow{PS}$  is represented by vector  $\underline{\boldsymbol{b}}$  as shown in the diagram.

Express the following in terms of  $\underline{a}$  and  $\underline{b}$ :


 $\mathbf{a}$ )  $\overrightarrow{PR}$ 

(b)  $\overrightarrow{SQ}$ 

 $(\mathbf{c}) \xrightarrow{SM}$ 

**(6)** 

**3.** State the coordinates of each vertex of the rectangular based pyramid, *OPQRS*, with height 15, shown in the diagram.



**4.** Calculate the magnitude of each vector below, leaving your answer as a surd in its simplest form.

a) 
$$\underline{\boldsymbol{u}} = \begin{pmatrix} 2\\4\\5 \end{pmatrix}$$
 (b)  $\underline{\boldsymbol{v}} = \begin{pmatrix} \sqrt{7}\\\sqrt{2}\\3\sqrt{2} \end{pmatrix}$  (5)

**Total Marks: 30**