St Peter the Apostle High School <u>Maths Department</u>

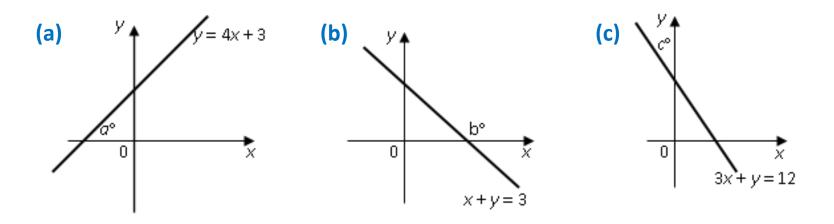
Higher Practice Questions

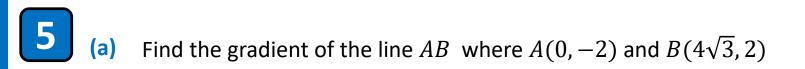
1. Straight Line

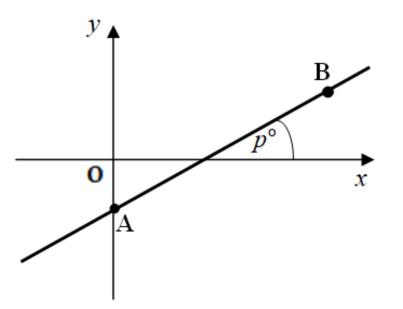
Find the gradient of the line joining each pair of points:

- (a) T(3, 2) and R(4, 4)(b) A(-1, 3) and Q(4, 8)(c) C(-3, -2) and S(7, 3)(d) V(0, 3) and L(-3, 9)(e) B(1, 4) and H(-1, -2)(f) G(-3, 4) and W(-1, 8)(g) K(9, -2) and N(5, -12)(h) X(-7, -4) and E(-3, -2)

Rearrange the equation of each line so that it is in the form y = mx + c and write down its gradient and y – intercept.


(a)	3y - 5x = 3	(b)	4x + 3y = 9
(c)	2x - y = -12	(d)	5y + 2x = 0
(e)	2y - 6x + 15 = 0	(f)	4x - 3y - 7 = 0
(g)	5x + 2y + 6 = 0	(h)	8y + 4x - 11 = 0




Write down the equation, in the form y = mx + c, where possible, of each of the straight lines described below.

- (a) A straight line passes through the point (0, 7), with a gradient of 6.
- (b) A straight line passes through the point (0, 11), with a gradient of -2.
- (c) A straight line has a gradient of $\frac{1}{2}$ and passes through the point (-1, 4).
- (d) A straight line parallel to the x axis and passes through (-2, 4).
- (e) A straight line parallel to the y axis and passes through (5, 1).
- (f) The A straight line passes through the point (0, -4), with a gradient of $\frac{2}{3}$.
- (g) A straight line has a gradient of $-\frac{1}{2}$ and passes through the point (-1, 4).

Calculate the size of the angle marked in each diagram.

(b) Find the size of the angle p° , that the line AB makes with the positive direction of the x-axis

Find the point of intersection between each pair of lines

(a)
$$3x + 4y = -7$$
 and $2x + y = -3$
(b) $y = -x + 12$ and $y = x - 4$
(c) $2x - 5y = 1$ and $4x - 3y = 9$
(d) $2x + 4y = 7$ and $4x - 3y = 3$
(e) $2x + 5y = 16$ and $x - y = 1$

Prove that each of the following sets of points is collinear

```
(a) A(1, 1), B(3, 9) and C(-2, -11)
(b) P(-2, -3), Q(0, 1) and R(5, 11)
(c) S(2, 1), T(5, -2) and U(3, 0)
(d) D(-2, 1), E(-1, 0) and F(7, -8)
```


The points (2, -2), (3, p) and (-1,7) are collinear. Find the value of p.

Use the distance formula to calculate the length of the straight line joining each pair of points. Leave your answer as a surd.

(a) A(1, 5) and B(3, 3)
(b) P(-7, 1) and Q (3, 8)
(c) C(-3, -5) and D(7, 1)
(d) V(0, 3) and W (-7, 9)
(e) G(7, 3) and H(-1, -2)
(f) R(-2, 3) and S (-1, 8)

(a) Find the midpoint of each pair of points.

- (i) A(-3, 1) and B(1, 3)(ii) P(1, 4) and Q(9, 8)(iii) C(3, -3) and D(-6, 1)(iv) V(-7, 1) and W(3, 9)(v) G(2, 4) and H(-2, -2)(vi) R(-6, 2) and S(-2, 8)
- (b) The line CD has the midpoint (5, 3) and the point C has coordinates (- 3, 2).
 Find the coordinates of D.
- (c) The line AB has the midpoint (- 2, 7) and the point A has coordinates (3, 7)
 Find the coordinates of B.

Write down the gradient of the line perpendicular to the gradient given

(a)
$$m = 3$$

(b) $m = -2$
(c) $m = 6$
(d) $m = \frac{1}{3}$
(e) $m = -\frac{1}{4}$
(f) $m = \frac{1}{5}$
(g) $m = -\frac{2}{3}$
(h) $m = \frac{5}{4}$
(i) $m = -\frac{3}{5}$
(j) $m = 0$

Write down the gradient of the line perpendicular to the given line.

(a) y = 5x + 2	(b) $y = \frac{2}{3}x - 7$
(c) $y = 2 - 3x$	(d) $y = 4 - \frac{1}{2}x$
(e) $y = 3x - 3$	(f) $y = x + 9^{2}$
(g) $y - 4x + 12 = 0$	(h) $3x - y - 8 = 0$
(i) $3x - 2y + 7 = 0$	(j) $8y + 4x - 2 = 0$

Find the equations of the straight lines through the following pairs of points:

(a) (3, 4), (1, 2)	(b) (0, 1), (- 5, - 2)
(c) (− 1, − 3), (4, 0)	(d) (0, 0), (2, − 3)
(e) (1, -4), (3, -6)	(f) (− 5, − 2), (− 8, − 1)

Find the equations of the straight lines through the following points, parallel to the given lines:

(a) (2, 3), y = 6x - 4(b) (-5, 2), x + y = 5(c) (1, 0), x - y = 0(d) (-3, 2), 2x + 3y + 4 = 0

Find the equations of the straight lines perpendicular to the given line, passing through the given points:

(a)
$$y = 2x - 3$$
, (6, -1)
(b) $y - 4x = 1$, (9, 3)
(c) $2y - x - 5 = 0$, (3, 4)
(d) $2x + 3y + 1 = 0$, (5, 0)

P is (3, 5), Q is (-3, 1) and R is (5, -3). Find:

- (a) the midpoint of QR
- (b) the gradient of the median from P
- (c) the equation of the median from P.

Find the equations of the medians of the triangle ABC, in which A is the point (6, 8), B is (-4, 0) and C is (2, -2).

- P is (5, 2), Q is (- 3, 0) and R is (3, 4). Find:
- (a) the gradient of QR
- (b) the gradient of the altitude from P
- (c) the equation of the altitude from P.

Find the equations of the altitudes of the triangle with vertices A(4, 0), B(0, 4) and C(-2, -2).

Find the equations of the perpendicular bisectors of the straight lines joining the points:

(a) D(8, 4) and E(2, 6) (b) F(-1, 3) and G(1, -3)

The vertices of a triangle are P(-3, 1), Q(5, 5) and R(6, -2).

- (a) Find (i) the equations of the perpendicular bisectors of PQ and QR.
 (ii) the intersection point, S, of these lines.
- (b) Show that S lies on the perpendicular bisector of PR.