St Peter the Apostle High School Maths Department

Higher Practice Questions

9. Integration

(a)
$$x^5$$

(b)
$$x^9$$

(c)
$$x^{14}$$

(d)
$$x^{50}$$

(e)
$$x^{-3}$$

(f)
$$x^{-6}$$

(g)
$$x^{-10}$$

(h)
$$x^{-27}$$

2

Integrate the following:

(a)
$$2x^3$$

(b)
$$5x^4$$

(c)
$$\frac{1}{2}x^5$$

(d)
$$\frac{2}{5}x^3$$

(e)
$$\frac{2}{x^2}$$

(f)
$$\frac{3}{x^3}$$

(g)
$$3x^{-5}$$

(h)
$$2x^{-2}$$

(i)
$$\frac{14}{x^{-4}}$$

(j)
$$\frac{2}{7x^2}$$

(k)
$$\frac{6}{5x^3}$$

(I)
$$\frac{5}{2x^{-2}}$$

Integrate the following:

(a)
$$x^{\frac{1}{2}}$$

(b)
$$x^{\frac{2}{3}}$$

(c)
$$x^{\frac{5}{6}}$$

(d)
$$x^{\frac{1}{4}}$$

(e)
$$x^{\frac{3}{7}}$$

(f)
$$x^{\frac{2}{9}}$$

(g)
$$x^{\frac{1}{5}}$$

(h)
$$x^{\frac{3}{11}}$$

4

Integrate the following:

(a)
$$\sqrt{x}$$

(b)
$$\sqrt{x^3}$$

(c)
$$\sqrt[3]{x}$$

(d)
$$\sqrt[3]{x^2}$$

(e)
$$\sqrt[5]{x^4}$$

(f)
$$\frac{1}{\sqrt{x}}$$

(g)
$$\frac{1}{\sqrt[5]{x^3}}$$

(h)
$$\frac{3}{\sqrt[4]{x^3}}$$

(i)
$$\frac{1}{2\sqrt[3]{x^2}}$$

Find:

(a)
$$\int (x^3 + 3x^2 + 5x) dx$$

(b)
$$\int (3x^5 + 2x^4 - x)dx$$

(c)
$$\int (x^2 + 6x - 1) dx$$

(d)
$$\int (x^{\frac{2}{3}} + 4x^2) dx$$

(e)
$$\int (3x^{\frac{1}{2}} - 2x^{-5})dx$$

(f)
$$\int (5x^{-2} - 3x^{\frac{1}{2}}) dx$$

(g)
$$\int \left(\frac{1}{2\sqrt[3]{x}} + x^2\right) dx$$

(h)
$$\int \left(3x^7 - \frac{1}{5\sqrt[4]{x^3}}\right) dx$$
 (i) $\int \left(\frac{3}{5\sqrt{x^5}} + 5\right) dx$

(i)
$$\int \left(\frac{3}{5\sqrt{x^5}} + 5\right) dx$$

Find:

(a)
$$\int (x+1)(x+2)dx$$

(b)
$$\int (x-3)(x+4)dx$$

(c)
$$\int x(x+4)dx$$

(d)
$$\int \frac{1}{x^2} (x^3 - 2x^2) dx$$

(e)
$$\int \frac{1}{x} (x^2 + x) dx$$

(f)
$$\int \left(\frac{1}{x} + x\right)^2 dx$$

Find:

(a)
$$\int \frac{x^2 + 3x}{x} \, dx$$

(b)
$$\int \frac{2x^3 + x^2 + x}{x} dx$$
 (c) $\int \frac{x^4 + x^3 - 6}{x^2} dx$

(c)
$$\int \frac{x^4 + x^3 - 6}{x^2} dx$$

(d)
$$\int \frac{(x+1)(x-1)}{\sqrt{x}} dx$$
 (e)
$$\int \frac{1+\sqrt{x}}{x^3} dx$$

(e)
$$\int \frac{1+\sqrt{x}}{x^3} dx$$

(f)
$$\int \frac{3x^4 + 5x^2 + 1}{2x^2} dx$$

Evaluate each of the following definite integrals

(a)
$$\int_{-1}^{1} (5x^3 - 2x) \ dx$$

(a)
$$\int_{-1}^{1} (5x^3 - 2x) \ dx$$
 (b) $\int_{-1}^{1} (3x + 2)(x - 2) \ dx$ (c) $\int_{-2}^{0} (x - 3)^2 \ dx$

(c)
$$\int_{-2}^{0} (x-3)^2 dx$$

(d)
$$\int_0^2 (3x^2 + 8x - 5) \ dx$$
 (e) $\int_{-1}^2 (1 + 3x)(1 - x) \ dx$ (f) $\int_1^3 \left(x^2 - \frac{1}{x^2}\right) \ dx$

(e)
$$\int_{-1}^{2} (1+3x)(1-x) dx$$

(f)
$$\int_{1}^{3} \left(x^{2} - \frac{1}{x^{2}} \right) dx$$

(a) Find a, when a > 0

(i)
$$\int_0^a (2x+2)dx = 8$$
 (ii) $\int_0^a x^2 dx = \frac{64}{3}$

- **(b)** Given that $\int_0^a 3\sqrt{x} \, dx = 16$, calculate the value of a
- (c) Determine p, given that $\int_1^p x^{\frac{1}{2}} dx = 42$
- (d) If $\int_0^k x^{\frac{1}{3}} dx = 12$, calculate the value of k

(b)

(c)

(d)

The diagram shows part of the graph of

$$y = x^3 - 3x^2 + 2x$$

- (a) Find the coordinates of P and Q
- (b) Calculate the shaded area

12

The diagram shows part of the graph of

$$y = x^3 - 3x^2 - 10x$$

- (a) Find the coordinates of A and B
- (b) Calculate the shaded area

Parts of the graphs of $f(x) = x^2 + 2x$ and $g(x) = x^3 - x^2 - 6x$ are shown in the diagram.

The graphs intersect at A(4, 24) and the origin.

Find the shaded are enclosed between the curves

The curves with equations $y=x^2$ and $y=2x^2-9$ intersect at K and L as shown

- (a) Find the coordinates of the points K and L
- (b) Calculate the area enclosed between the curves

Calculate the shaded area enclosed between the parabolas with the equations

$$y = 1 + 10x - 2x^2$$
 and $y = 1 + 5x - x^2$

Given the gradient $\frac{dy}{dx}$ of the curve at the point (x, y), and a point on the curve, find the equation of each curve

(a)
$$\frac{dy}{dx} = 3x^2 - 6x + 1$$
 (3,4)

(b)
$$\frac{dy}{dx} = 4x^3 - 6x^2$$
 (1,9)

17

Find the equations of the curves which satisfy the following conditions:

(a)
$$\frac{dy}{dx} = 4x$$
 and the curve passes through the point (1, 3)

(b)
$$\frac{dy}{dx} = \frac{1}{\sqrt{x}}$$
 and the curve passes through the point (9, 10)

Find the solution to the following differential equations

(a)
$$\frac{dy}{dx} = 4x^3 + \frac{2}{x^2}$$
 and $y = 0$ when $x = 1$

(b)
$$\frac{dy}{dx} = \frac{u^2 + 1}{u^2}$$
 and $y = 4$ when $u = 2$

11

A curve y = f(x) is such that $\frac{dy}{dx} = 4x - 6x^2$

The curve passes through the point (-1, 9)

Express y in terms of x

The diagram shows a sketch of the graph of $y = x^3 - 4x^2 + x + 6$

- (a) Show that the graph cuts the x axis at (– 1, 0).
- (b) Hence, or otherwise, find the coordinates of Q
- (c) Find the shaded area