Wave Function

Go to the appropriate Past Paper for the answers

2019 Paper 2

- **6.** (a) Express $2 \cos x^{\circ} 3 \sin x^{\circ}$ in the form $k \cos(x+a)^{\circ}$ where k > 0 and $0 \le a < 360$.

(b) Hence solve $2 \cos x^{\circ} - 3 \sin x^{\circ} = 3$ for $0 \le x < 360$.

3

2018 Paper 2

8. (a) Express $2\cos x^{\circ} - \sin x^{\circ}$ in the form $k\cos(x-a)^{\circ}$, k > 0, 0 < a < 360.

- (b) Hence, or otherwise, find
 - (i) the minimum value of $6\cos x^{\circ} 3\sin x^{\circ}$ and

1

(ii) the value of x for which it occurs where $0 \le x < 360$.

2

2017 Paper 1

14. (a) Express $\sqrt{3} \sin x^{\circ} - \cos x^{\circ}$ in the form $k \sin (x-a)^{\circ}$, where k > 0 and 0 < a < 360.

4

(b) Hence, or otherwise, sketch the graph with equation $v = \sqrt{3} \sin x^{\circ} - \cos x^{\circ}, \ 0 \le x \le 360.$

3

2016 Paper 2

8. (a) Express $5\cos x - 2\sin x$ in the form $k\cos(x+a)$, where k > 0 and $0 < a < 2\pi$.

(b) The diagram shows a sketch of part of the graph of $y = 10 + 5\cos x - 2\sin x$ and the line with equation y = 12.

9. The blades of a wind turbine are turning at a steady rate.

The height, h metres, of the tip of one of the blades above the ground at time, t seconds, is given by the formula

ጸ

3

2

3

$$h = 36\sin(1.5t) - 15\cos(1.5t) + 65$$
.

Express $36\sin(1.5t) - 15\cos(1.5t)$ in the form

$$k \sin(1.5t - a)$$
, where $k > 0$ and $0 < a < \frac{\pi}{2}$,

and hence find the **two** values of t for which the tip of this blade is at a height of 100 metres above the ground during the first turn.

Specimen 5 Paper 2

10. Two sound sources produce the waves $y = \sin t$ and $y = \sqrt{3} \cos t$.

An investigation into the addition of these two waves produces the graph shown, with equation $y = k \cos(t - \alpha)$ for $0 \le t \le 2\pi$.

(a) Calculate the values of k and α .

The point P has a y-coordinate of 1.2.

(c) Hence calculate the value of the *t*-coordinate of point P.

Exemplar Paper 1

- 9. The expression $\cos 4x \sqrt{3} \sin 4x$ can be written in the form $k \cos(4x + a)$ where k > 0 and $0 \le a \le 2\pi$.
 - (a) Calculate the values of k and a.
 - (b) Find the points of intersection of the graph of $y = \cos 4x \sqrt{3} \sin 4x$ with the x axis, in the interval $0 \le x \le \frac{\pi}{2}$.

Exemplar Paper 1

- 11. Functions f and g are defined on suitable domains by $f(x) = x^3 1$ and g(x) = 3x + 1.
 - (a) Find an expression for k(x), where k(x) = g(f(x)).
 - (b) If h(k(x)) = x, find an expression for h(x).

4. If $3\sin x - 4\cos x$ is written in the form $k\cos(x - a)$, what are the values of $k\cos a$ and $k\sin a$?

2

4

2

4

3

4

7

4

3

2013 Paper 1

23. (a) The expression $\sqrt{3}\sin x^{\circ} - \cos x^{\circ}$ can be written in the form $k \sin(x - a)^{\circ}$, where k > 0 and $0 \le a < 360$.

Calculate the values of k and a.

(b) Determine the maximum value of $4+5\cos x^{\circ}-5\sqrt{3}\sin x^{\circ}$, where $0 \le x < 360$.

2012 Paper 1

22. (a) The expression $\cos x - \sqrt{3} \sin x$ can be written in the form $k \cos(x + a)$ where k > 0 and $0 \le a < 2\pi$.

Calculate the values of *k* and *a*.

(b) Find the points of intersection of the graph of $y = \cos x - \sqrt{3} \sin x$ with the x and y axes, in the interval $0 \le x \le 2\pi$.

2011 Paper 2

6. (a) The expression $3\sin x - 5\cos x$ can be written in the form $R\sin(x+a)$ where R > 0 and $0 \le a < 2\pi$.

Calculate the values of R and a.

(b) Hence find the value of t, where $0 \le t \le 2$, for which

$$\int_{0}^{t} (3\cos x + 5\sin x) \ dx = 3.$$

2010 Paper 2

2. (a) $12\cos x^{\circ} - 5\sin x^{\circ}$ can be expressed in the form $k\cos(x+a)^{\circ}$, where k > 0 and $0 \le a < 360$.

Calculate the values of k and a.

- (b) (i) Hence state the maximum and minimum values of $12 \cos x^{\circ} 5 \sin x^{\circ}$.
 - (ii) Determine the values of x, in the interval $0 \le x < 360$, at which these maximum and minimum values occur.

13. k and a are given by

$$k \sin a^{\circ} = 1$$

$$k \cos a^{\circ} = \sqrt{3}$$

where k > 0 and $0 \le a < 90$.

What are the values of k and a?

2008 Paper 2

3. (a) (i) Diagram 1 shows part of the graph of y = f(x), where $f(x) = p\cos x$.

Write down the value of p.

2

2

2

4

3

5

(ii) Diagram 2 shows part of the Diagram 2 graph of y = g(x), where $g(x) = q\sin x$.

Write down the value of q.

- (b) Write f(x) + g(x) in the form $k\cos(x+a)$ where k > 0 and $0 < a < \frac{\pi}{2}$.
- (c) Hence find f'(x) + g'(x) as a single trigonometric expression.

2007 Paper 2

- 11. (a) Express $f(x) = \sqrt{3}\cos x + \sin x$ in the form $k\cos(x-a)$, where k > 0 and $0 < a < \frac{\pi}{2}$.
 - (b) Hence or otherwise sketch the graph of y = f(x) in the interval $0 \le x \le 2\pi$.

2006 Paper 2

- **10.** A curve has equation $y = 7\sin x 24\cos x$.
 - (a) Express $7\sin x 24\cos x$ in the form $k\sin(x-a)$ where k > 0 and $0 \le a \le \frac{\pi}{2}$.
 - (b) Hence find, in the interval $0 \le x \le \pi$, the x-coordinate of the point on the curve where the gradient is 1.

2005 Paper 1

- 10. (a) Express $\sin x \sqrt{3}\cos x$ in the form $k\sin(x-a)$ where k > 0 and $0 \le a \le 2\pi$.
 - (b) Hence, or otherwise, sketch the curve with equation $y = 3 + \sin x \sqrt{3} \cos x$ in the interval $0 \le x \le 2\pi$.

6. (a) Express $3\cos(x^\circ) + 5\sin(x^\circ)$ in the form $k\cos(x^\circ - a^\circ)$ where k > 0 and $0 \le a \le 90$.

4

3

(b) Hence solve the equation $3\cos(x^{\circ}) + 5\sin(x^{\circ}) = 4$ for $0 \le x \le 90$.