Vectors

Go to the appropriate Past Paper for the answers

2019 Paper 1

- 5. (a) Show that the points A(1,5,-3), B(4,-1,0) and C(8,-9,4) are collinear.
 - (b) State the ratio in which B divides AC.

3

1

2019 Paper 1

- 9. Vectors $\mathbf u$ and $\mathbf v$ have components $\begin{pmatrix} p \\ -2 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 2p+16 \\ -3 \\ 6 \end{pmatrix}$, $p \in \mathbb R$.
 - (a) (i) Find an expression for **u.v.**
 - (ii) Determine the values of p for which \mathbf{u} and \mathbf{v} are perpendicular.
 - (b) Determine the value of p for which \mathbf{u} and \mathbf{v} are parallel.

3

2

1

2019 Paper 2

3. E,ABCD is a rectangular based pyramid.

$$\overrightarrow{\mathsf{AB}} = \mathbf{p}, \, \overrightarrow{\mathsf{AD}} = \mathbf{q} \text{ and } \overrightarrow{\mathsf{AE}} = \mathbf{r}.$$

(a) Express \overrightarrow{BE} in terms of \mathbf{p} and \mathbf{r} .

Point F divides BC in the ratio 3:1.

(b) Express vector $\overrightarrow{\mathsf{EF}}$ in terms of \mathbf{p}, \mathbf{q} and $\mathbf{r}.$

2

1

2019 Paper 2

- 14. The vectors \mathbf{u} and \mathbf{v} are such that
 - $|\mathbf{u}| = 4$
 - $|\mathbf{v}| = 5$
 - u.(u+v)=21

Determine the size of the angle between the vectors \mathbf{u} and \mathbf{v} .

2018 Paper 1

- **5.** A(-3, 4, -7), B(5, t, 5) and C(7, 9, 8) are collinear.
 - (a) State the ratio in which B divides AC.
 - (b) State the value of t.

9. The diagram shows a triangular prism ABC, DEF.

$$\overrightarrow{AB} = \mathbf{t}$$
, $\overrightarrow{AC} = \mathbf{u}$ and $\overrightarrow{AD} = \mathbf{v}$.

(a) Express \overrightarrow{BC} in terms of \mathbf{u} and \mathbf{t} .

M is the midpoint of BC.

(b) Express MD in terms of \mathbf{t} , \mathbf{u} and \mathbf{v} .

1

2

1

1

1

2018 Paper 1

- 12. Vectors \mathbf{a} and \mathbf{b} are such that $\mathbf{a} = 4\mathbf{i} 2\mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = -2\mathbf{i} + \mathbf{j} + p\mathbf{k}$.
 - (a) Express 2a + b in component form.
 - (b) Hence find the values of p for which $|2\mathbf{a} + \mathbf{b}| = 7$.

2018 Paper 2

- 2. Vectors \mathbf{u} and \mathbf{v} are defined by $\mathbf{u} = \begin{pmatrix} -1 \\ 4 \\ -3 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -7 \\ 8 \\ 5 \end{pmatrix}$.
 - (a) Find u.v.
 - (b) Calculate the acute angle between \boldsymbol{u} and $\boldsymbol{v}.$

Specimen 5 Paper 1

5. The points A(0,9,7), B(5,-1,2), C(4,1,3) and D(x,-2,2) are such that \overrightarrow{AB} is perpendicular to \overrightarrow{CD} .

Determine the value of x.

Specimen Paper 2

- 4. D,OABC is a square-based pyramid as shown.
 - O is the origin and OA = 4 units.
 - M is the mid-point of OA.
 - $\overrightarrow{OD} = 2\mathbf{i} + 2\mathbf{j} + 6\mathbf{k}$
 - (a) Express \overrightarrow{DB} and \overrightarrow{DM} in component form.
 - (b) Find the size of angle BDM.

5. Vectors \mathbf{u} and \mathbf{v} are $\begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -8 \\ 6 \end{pmatrix}$ respectively.

1

3

2

5

2

2

2

3

- (a) Evaluate u.v.
- (b) Vector \mathbf{w} makes an angle of $\frac{\pi}{3}$ with \mathbf{u} and $|\mathbf{w}| = \sqrt{3}$. Calculate $\mathbf{u} \cdot \mathbf{w}$.

2017 Paper 2

- 5. In the diagram, $\overrightarrow{PR} = 9\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$ and $\overrightarrow{RQ} = -12\mathbf{i} 9\mathbf{j} + 3\mathbf{k}$.
 - (a) Express $\overset{\textstyle \rightarrow}{\text{PQ}}$ in terms of $i,\,j$ and k.

The point S divides QR in the ratio 1:2.

- (b) Show that $\overrightarrow{PS} = i j + 4k$.
- (c) Hence, find the size of angle QPS.

2016 Paper 1

- 7. Three vectors can be expressed as follows: $\overrightarrow{FG} = -2\mathbf{i} 6\mathbf{j} + 3\mathbf{k}$
 - (a) Find \overrightarrow{FH} . $\overrightarrow{GH} = 3\mathbf{i} + 9\mathbf{j} 7\mathbf{k}$
 - (b) Hence, or otherwise, find \overrightarrow{FE} . $\overrightarrow{FH} = 2\mathbf{i} + 3\mathbf{i} + \mathbf{k}$

2016 Paper 1

11. (a) A and C are the points (1, 3, -2) and (4, -3, 4) respectively. Point B divides AC in the ratio 1:2.

Find the coordinates of B.

(b) $\stackrel{\longrightarrow}{k{\rm AC}}$ is a vector of magnitude 1, where k>0 . Determine the value of k.

5. The picture shows a model of a water molecule.

Relative to suitable coordinate axes, the oxygen atom is positioned at point A(-2, 2, 5).

2

The two hydrogen atoms are positioned at points B(-10, 18, 7) and C(-4, -6, 21)as shown in the diagram below.

- (a) Express \overrightarrow{AB} and \overrightarrow{AC} in component form.
- (b) Hence, or otherwise, find the size of angle BAC.

New 2015 Paper 1

1. Vectors $\mathbf{u} = 8\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{v} = -3\mathbf{i} + t\mathbf{j} - 6\mathbf{k}$ are perpendicular. Determine the value of t.

New 2015 Paper 2

- **6.** Vectors \mathbf{p} , \mathbf{q} and \mathbf{r} are represented on the diagram as shown.
 - BCDE is a parallelogram
 - ABE is an equilateral triangle
 - |p| = 3
 - Angle ABC = 90°
 - (a) Evaluate p.(q+r).
 - (b) Express \overrightarrow{EC} in terms of p, q and r.
 - (c) Given that $\overrightarrow{AE}.\overrightarrow{EC} = 9\sqrt{3} \frac{9}{2}$, find $|\mathbf{r}|$.

Specimen 4 Paper 1

3. In the diagram, P has coordinates (-6, 3, 9),

$$\overrightarrow{PQ} = 6\mathbf{i} + 12\mathbf{j} - 6\mathbf{k}$$
 and $\overrightarrow{PQ} = 2\overrightarrow{QR} = 3\overrightarrow{RS}$.

Find the coordinates of S.

Specimen 4 Paper 1

4. Given that $2x^2 + px + p + 6 = 0$ has no real roots, find the range of values for p, where $p \in \mathbb{R}$.

5

3

Specimen 4 Paper 2

6. The points A(0, 9, 7), B(5, -1, 2), C(4, 1, 3) and D(x, -2, 2) are such that AB is perpendicular to CD.

Determine the value of x.

5

Specimen 4 Paper 2

1. A square based right pyramid is shown in the diagram.

Square OABC has a side length of 60 units with edges OA and OC lying on the x-axis and y-axis respectively.

The coordinates of D are (30, 30, 80).

E is the midpoint of BD and F divides AB in the ratio 2:1.

- (a) Find the coordinates of E and F.
- (b) Calculate \overrightarrow{ED} . \overrightarrow{EF} .
- (c) Hence, or otherwise, calculate the size of angle DEF.

2

2

4

Exemplar Paper 2

5. D,OABC is a square-based pyramid as shown.

D V B B

O is the origin and OA = 4 units.

M is the mid-point of OA.

$$\overrightarrow{\mathsf{OD}} = 2\mathbf{i} + 2\mathbf{j} + 6\mathbf{k}$$

- (a) Express \overrightarrow{OB} in terms of i and j and k.
- (b) Express \overrightarrow{DB} and \overrightarrow{DM} in component form.
- (c) Find the size of angle BDM.

3 5

1

Exemplar Paper 2

6. An equilateral triangle with sides of length 3 units is shown.

1

Vector \mathbf{r} is 2 units long and is perpendicular to both vectors \mathbf{p} and \mathbf{q} .

Calculate the value of the scalar product p.(p+q+r).

6. Given that $u = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}$ and $v = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, find 2u - 3v in component form.

2014 Paper 1

16. The unit vectors \mathbf{a} and \mathbf{b} are such that $\mathbf{a}.\mathbf{b} = \frac{2}{3}$. Determine the value of $\mathbf{a}.(\mathbf{a} + 2\mathbf{b})$.

2014 Paper 1

14. The vectors
$$\mathbf{u} = \begin{pmatrix} 1 \\ k \\ k \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} -6 \\ 2 \\ 5 \end{pmatrix}$ are perpendicular.

What is the value of k?

2014 Paper 1

19. The diagram shows a regular hexagon PQRSTW. \overrightarrow{PW} and \overrightarrow{PQ} represent vectors \boldsymbol{u} and \boldsymbol{v} respectively. What is \overrightarrow{SW} in terms of \boldsymbol{u} and \boldsymbol{v} ?

2

2

2

2

2

2

4

5

2013 Paper 1

12. If f = 3i + 2k and g = 2i + 4j + 3k, find |f + g|.

2013 Paper 1

14. Given that $|\mathbf{a}| = 3$, $|\mathbf{b}| = 2$ and $\mathbf{a} \cdot \mathbf{b} = 5$, what is the value of $\mathbf{a} \cdot (\mathbf{a} + \mathbf{b})$?

2013 Paper 1

- **24.** (a) (i) Show that the points A(-7, -8, 1), T(3, 2, 5) and B(18, 17, 11) are collinear.
 - (ii) Find the ratio in which T divides AB.
 - (b) The point C lies on the x-axis.If TB and TC are perpendicular, find the coordinates of C.

7. If
$$\mathbf{u} = \begin{pmatrix} -3 \\ 1 \\ 2t \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 1 \\ t \\ -1 \end{pmatrix}$ are perpendicular, what is the value of t ?

2

2

2012 Paper 1

10. The diagram shows a square-based pyramid P,QRST.

 $\overrightarrow{TS}, \overrightarrow{TQ}$ and \overrightarrow{TP} represent f,~g and h respectively.

Express \overrightarrow{RP} in terms of \mathbf{f} , \mathbf{g} and \mathbf{h} .

2012 Paper 1

15. If
$$\mathbf{u} = k \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}$$
, where $k > 0$ and \mathbf{u} is a unit vector, determine the value of k .

2

2012 Paper 1

17. Given that
$$\mathbf{a} = \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}$$
 and $\mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) = 7$, what is the value of $\mathbf{a} \cdot \mathbf{b}$?

2

2012 Paper 2

- 5. A is the point (3, -3, 0), B is (2, -3, 1) and C is (4, k, 0).
 - (a) (i) Express \overrightarrow{BA} and \overrightarrow{BC} in component form.

7

(ii) Show that $\cos ABC = \frac{3}{\sqrt{2(k^2 + 6k + 14)}}$.

5

2

(b) If angle ABC = 30°, find the possible values of k.

2011 Paper 1

1. Given that
$$\mathbf{p} = \begin{pmatrix} 2 \\ 5 \\ -7 \end{pmatrix}$$
, $\mathbf{q} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} -4 \\ 2 \\ 0 \end{pmatrix}$, express $2\mathbf{p} - \mathbf{q} - \frac{1}{2}\mathbf{r}$ in component form.

2011 Paper 1

15. Given that the points S(-4, 5, 1), T(-16, -4, 16) and U(-24, -10, 26) are colline: calculate the ratio in which T divides SU.

14. An equilateral triangle of side 3 units is shown.

The vectors \mathbf{p} and \mathbf{q} are as represented in the diagram.

What is the value of **p.q**?

2

2011 Paper 2

1. D,OABC is a square based pyramid as shown in the diagram below.

O is the origin, D is the point (2, 2, 6) and OA = 4 units.

M is the mid-point of OA.

3

5

2

2

1

2010 Paper 1

3. Given that $\mathbf{u} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$, find $3\mathbf{u} - 2\mathbf{v}$ in component form.

2010 Paper 1

10. The vectors $x\mathbf{i} + 5\mathbf{j} + 7\mathbf{k}$ and $-3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ are perpendicular.

What is the value of x?

2010 Paper 2

1. The diagram shows a cuboid OPQR,STUV relative to the coordinate axes.

P is the point (4, 0, 0),

Q is (4, 2, 0) and U is (4, 2, 3).

M is the midpoint of OR.

N is the point on UQ such that $UN = \frac{1}{3}UQ. \label{eq:unitary}$

- (a) State the coordinates of M and N.
- (b) Express \overrightarrow{VM} and \overrightarrow{VN} in component form.
- (c) Calculate the size of angle MVN.

1

2

The vector \boldsymbol{u} has components Find a unit vector which is parallel to u.

2

2009 Paper 1

- D, E and F have coordinates (10, -8, -15), (1, -2, -3) and (-2, 0, 1) respectively.
 - (a) (i) Show that D, E and F are collinear.
 - (ii) Find the ratio in which E divides DF.
 - (b) G has coordinates (k, 1, 0). Given that DE is perpendicular to GE, find the value of k.

6

2

2009 Paper 2

7. Vectors p, q and r are represented on the diagram shown where angle ADC = 30°.

It is also given that $|\mathbf{p}| = 4$ and $|\mathbf{q}| = 3$.

- (a) Evaluate $p \cdot (q + r)$ and $r \cdot (p q)$.
- (b) Find |q+r| and |p-q|.

2008 Paper 1

The vectors $\mathbf{u} = \begin{pmatrix} k \\ -1 \\ 1 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 0 \\ 4 \\ b \end{pmatrix}$ are perpendicular.

What is the value of k?

2008 Paper 1

11. E(-2, -1, 4), P(1, 5, 7) and F(7, 17, 13) are three collinear points.

P lies between E and F.

What is the ratio in which P divides EF?

2

2

2008 Paper 1

12. In the diagram RSTU, VWXY represents a cuboid. \overrightarrow{SR} represents vector \overrightarrow{f} , \overrightarrow{ST} represents vector \overrightarrow{g} and \overrightarrow{SW} represents vector \overrightarrow{h} . Express \overrightarrow{VT} in terms of f, g and h.

18. Vectors **p** and **q** are such that |p| = 3, |q| = 4 and **p**.**q** = 10.

Find the value of $q \cdot (p + q)$.

2

2008 Paper 2

2. The diagram shows a cuboid OABC, DEFG.

F is the point (8, 4, 6).

P divides AE in the ratio 2:1.

Q is the midpoint of CG.

- (a) State the coordinates of P and Q.
- (b) Write down the components of \overrightarrow{PQ} and \overrightarrow{PA} .
- (c) Find the size of angle QPA.

2

5

2

2007 Paper 1

2. Relative to a suitable coordinate system A and B are the points (-2, 1, -1) and (1, 3, 2) respectively.

A, B and C are collinear points and C is positioned such that BC = 2AB.

Find the coordinates of C.

1

2007 Paper 2

1. OABCDEFG is a cube with side 2 units, as shown in the diagram.

B has coordinates (2, 2, 0).

P is the centre of face OCGD and Q is the centre of face CBFG.

- (a) Write down the coordinates of G.
- (b) Find p and q, the position vectors of points P and Q.
- (c) Find the size of angle POQ.

1 2

2006 Paper 1

9. \boldsymbol{u} and \boldsymbol{v} are vectors given by $\boldsymbol{u} = \begin{pmatrix} k^3 \\ 1 \\ k+2 \end{pmatrix}$ and $\boldsymbol{v} = \begin{pmatrix} 1 \\ 3k^2 \\ -1 \end{pmatrix}$, where k > 0.

- (a) If $\mathbf{u} \cdot \mathbf{v} = 1$, show that $k^3 + 3k^2 k 3 = 0$.
- (b) Show that (k + 3) is a factor of $k^3 + 3k^2 k 3$ and hence factorise $k^3 + 3k^2 k 3$ fully.
- (c) Deduce the only possible value of k.
- (d) The angle between \boldsymbol{u} and \boldsymbol{v} is $\boldsymbol{\theta}$. Find the exact value of $\cos \boldsymbol{\theta}$.

2

1

5

- **6.** P is the point (-1, 2, -1) and Q is (3, 2, -4).
 - (a) Write down \overrightarrow{PQ} in component form.
 - (b) Calculate the length of \overrightarrow{PQ} .
 - (c) Find the components of a unit vector which is parallel to \overrightarrow{PQ} .

2005 Paper 1

3. D,OABC is a pyramid. A is the point (12, 0, 0), B is (12, 6, 0) and D is (6, 3, 9).

F divides DB in the ratio 2:1.

- (a) Find the coordinates of the point F.
- (b) Express \overrightarrow{AF} in component form.

2005 Paper 2

4. The sketch shows the positions of Andrew(A), Bob(B) and Tracy(T) on three hill-tops.

Relative to a suitable origin, the coordinates (in hundreds of metres) of the three people are A(23, 0, 8), B(-12, 0, 9) and T(28, -15, 7).

In the dark, Andrew and Bob locate Tracy using heat-seeking beams.

- (a) Express the vectors TA and TB in component form.
- (b) Calculate the angle between these two beams.

2005 Paper 2

10. Vectors a and c are represented by two sides of an equilateral triangle with sides of length 3 units, as shown in the diagram.

Vector \boldsymbol{b} is 2 units long and \boldsymbol{b} is perpendicular to both \boldsymbol{a} and \boldsymbol{c} .

Evaluate the scalar product $a \cdot (a + b + c)$.

2004 Paper 1

- **5.** A, B and C have coordinates (-3, 4, 7), (-1, 8, 3) and (0, 10, 1) respectively.
 - (a) Show that A, B and C are collinear.
 - (b) Find the coordinates of D such that AD = 4AB.

2004 Paper 2

- 2. P, Q and R have coordinates (1, 3, -1), (2, 0, 1) and (-3, 1, 2) respectively.
 - (a) Express the vectors QP and QR in component form.
 - (b) Hence or otherwise find the size of angle PQR.

2

1

1

5

1

4

3

2