Exponential & Logarithms

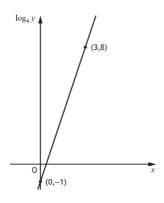
Go to the appropriate Past Paper for the answers

2019 Paper 1

- **14.** (a) Evaluate $\log_{10} 4 + 2\log_{10} 5$.
 - (b) Solve $\log_2(7x-2) \log_2 3 = 5$, $x \ge 1$.

2019 Paper 2

9. Electricity on a spacecraft can be produced by a type of nuclear generator. The electrical power produced by this generator can be modelled by


$$P_t = 120e^{-0.0079t}$$

where P_t is the electrical power produced, in watts, after t years.

- (a) Determine the electrical power initially produced by the generator.
- (b) Calculate how long it takes for the electrical power produced by the generator to reduce by 15%.

2019 Paper 2

12. Two variables, x and y, are connected by the equation $y = ab^x$. The graph of $\log_4 y$ against x is a straight line as shown. Find the values of a and b.

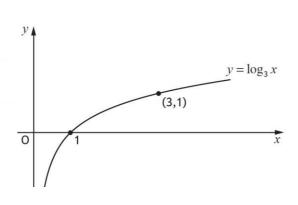
3

3

1

5

3


3

2018 Paper 1

6. Find the value of $\log_5 250 - \frac{1}{3} \log_5 8$.

2018 Paper 1

- 11. The diagram shows the curve with equation $y = \log_3 x$.
 - (a) sketch the curve with equation $y = 1 \log_3 x$.
 - (b) Determine the exact value of the *x*-coordinate of the point of intersection of the two curves.

11. A supermarket has been investigating how long customers have to wait at the checkout. During any half hour period, the percentage, P%, of customers who wait for less than t minutes, can be modelled by

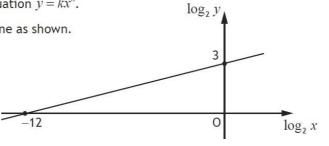
$$P = 100(1-e^{kt})$$
, where k is a constant.

- (a) If 50% of customers wait for less than 3 minutes, determine the value of k.
- (b) Calculate the percentage of customers who wait for 5 minutes or longer.

Specimen 5 Paper 1

- 10. (a) Evaluate $\log_5 25$.
 - (b) Hence solve $\log_4 x + \log_4 (x 6) = \log_5 25$, where x > 6.

2017 Paper 1


12. Given that $\log_a 36 - \log_a 4 = \frac{1}{2}$, find the value of a.

2017 Paper 2

9. Two variables, x and y, are connected by the equation $y = kx^n$.

The graph of $\log_2 y$ against $\log_2 x$ is a straight line as shown.

Find the values of k and n.

1

5

3

5

1

5

1

4

2016 Paper 1

- **14.** (a) Evaluate $\log_5 25$.
 - (b) Hence solve $\log_4 x + \log_4 (x 6) = \log_5 25$, where x > 6.

2016 Paper 2

6. Scientists are studying the growth of a strain of bacteria. The number of bacteria present is given by the formula

$$B(t) = 200 e^{0.107t}$$

where t represents the number of hours since the study began.

- (a) State the number of bacteria present at the start of the study.
- (b) Calculate the time taken for the number of bacteria to double.

New 2015 Paper 1

6. Evaluate
$$\log_6 12 + \frac{1}{3} \log_6 27$$
.

3

Specimen 4 Paper 2

7. Given that $P(t) = 30e^{t-2}$ decide whether each of the statements below is true or false. Justify your answers.

Statement A
$$P(0) = 30$$
.

6

Statement B When P(t) = 15, the only possible value of t is 1·3 to one decimal place.

Specimen 4 Paper 2

4. (a) Express $y = \log_4 2x$ in the form $y = \log_4 x + k$, clearly stating the value of k.

(b) Hence, or otherwise, describe the relationship between the graphs of $y = \log_4 2x$ and $y = \log_4 x$.

1

2

(c) Determine the coordinates of the point where the graph of $y = \log_4 2x$ intersects the x-axis.

(d) Sketch and annotate the graph of $y = f^{-1}(x)$, where $f(x) = \log_4 2x$.

3

2

Exemplar Paper 2

7. The concentration of the pesticide, *Xpesto*, in soil can be modelled by the equation.

where: $P_t = P_0 e^{-kt}$

- ullet P_{0} is the initial concentration;
- P_t is the concentration at time t;
- t is the time, in days, after the application of the pesticide.

Once in the soil, the half-life of a pesticide is the time taken for its concentration to be reduced to one half of its initial value.

(a) If the half-life of $\it Xpesto$ is 25 days, find the value of $\it k$ to 2 significant figures.

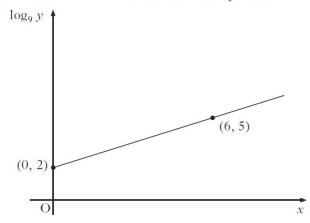
On all *Xpesto* packaging, the manufacturer states that 80 days after application the concentration of *Xpesto* in the soil will have decreased by over 90%.

(b) Is this statement correct? Justify your answer.

4

4

2014 Paper 1

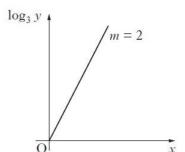

3. If $\log_4 12 - \log_4 x = \log_4 6$, what is the value of x?

2

2014 Paper 1

20. Evaluate $2 - \log_5 \frac{1}{25}$.

24. Two variables, x and y, are related by the equation $y = ka^x$.


When $\log_9 y$ is plotted against x, a straight line passing through the points (0, 2) and (6, 5) is obtained, as shown in the diagram.

Find the values of k and a.

2013 Paper 1

20. The graph of $\log_3 y$ plotted against x is a line through the origin with gradient 2, as shown.

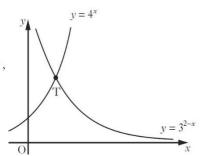
Express y in terms of x.

2013 Paper 2

5. Solve the equation

 $\log_5(3-2x) + \log_5(2+x) = 1$, where x is a real number.

2012 Paper 1

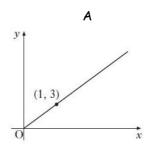

20. Simplify
$$\frac{\log_b 9a^2}{\log_b 3a}$$
, where $a > 0$ and $b > 0$.

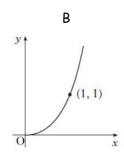
2012 Paper 2

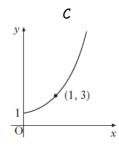
7. The diagram shows the curves with equations $y = 4^x$ and $y = 3^{2-x}$. The graphs intersect at the point T.

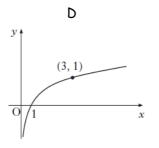
(a) Show that the x – coordinate of T can be written in the form $\frac{\log_a p}{\log_a q}$ for all a > 1.

(b) Calculate the y – coordinate of T.

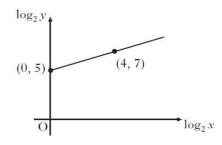

5


2


2


6

19. Which of the following diagrams represents the graph with equation $\log_3 y = x$?

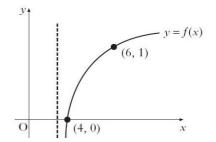


2011 Paper 2

5. Variables x and y are related by the equation $y = kx^n$.

The graph of $\log_2 y$ against $\log_2 x$ is a straight line through the points (0, 5) and (4, 7), as shown in the diagram.

Find the values of k and n.



5

2

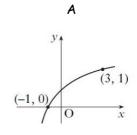
2010 Paper 1

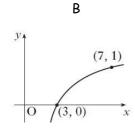
19. The diagram shows the graph of y = f(x) where f is a logarithmic function. What is f(x)?

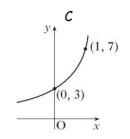
2

2010 Paper 2

- 7. (a) Given that $\log_4 x = P$, show that $\log_{16} x = \frac{1}{2}P$.
 - (b) Solve $\log_3 x + \log_9 x = 12$.


3


2


3

2009 Paper 1

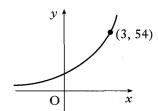
10. Which of the following graphs has equation $y = \log_5(x - 2)$?

- 3. (a) (i) Show that x = 1 is a root of $x^3 + 8x^2 + 11x 20 = 0$.
 - (ii) Hence factorise $x^3 + 8x^2 + 11x 20$ fully.
 - (b) Solve $\log_2(x+3) + \log_2(x^2 + 5x 4) = 3$.

5

2009 Paper 2

- 6. The size of the human population, N, can be modelled using the equation $N = N_0 e^{rt}$ where N_0 is the population in 2006, t is the time in years since 2006, and *r* is the annual rate of increase in the population.
 - (a) In 2006 the population of the United Kingdom was approximately 61 million, with an annual rate of increase of 1.6%. Assuming this growth rate remains constant, what would be the population in 2020?
 - (b) In 2006 the population of Scotland was approximately 5.1 million, with an annual rate of increase of 0.43%.
 - Assuming this growth rate remains constant, how long would it take for Scotland's population to double in size?

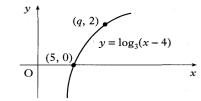

3

2

2008 Paper 1

The diagram shows part of the graph whose equation is of the form $y = 2m^x$.

What is the value of m?



2

2008 Paper 1

20. The diagram shows part of the graph of $y = \log_3(x - 4)$.

The point (q, 2) lies on the graph.

2

What is the value of q?

2008 Paper 1

23. Functions f, g and h are defined on suitable domains by

$$f(x) = x^2 - x + 10$$
, $g(x) = 5 - x$ and $h(x) = \log_2 x$.

- (a) Find expressions for h(f(x)) and h(g(x)).
- (b) Hence solve h(f(x)) h(g(x)) = 3.

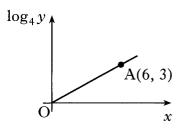
2

8. The curve with equation $y = \log_3(x - 1) - 2.2$, where x > 1, cuts the x-axis at the point (a, 0).

the point (a, 0). Find the value of a.

2007 Paper 2

11. Two variables x and y satisfy the equation $y = 3 \times 4^x$.


(a) Find the value of a if (a, 6) lies on the graph with equation $y = 3 \times 4^x$.

(b) If $(-\frac{1}{2}, b)$ also lies on the graph, find b.

(c) A graph is drawn of $\log_{10} y$ against x. Show that its equation will be of the form $\log_{10} y = Px + Q$ and state the gradient of this line.

2006 Paper 1

10. Two variables, x and y, are connected by the law $y = a^x$. The graph of $\log_4 y$ against x is a straight line passing through the origin and the point A(6, 3). Find the value of a.

1

4

5

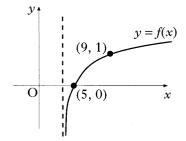
2

4

2006 Paper 2

11. It is claimed that a wheel is made from wood which is over 1000 years old.

To test this claim, carbon dating is used.


The formula $A(t) = A_0 e^{-0.000124t}$ is used to determine the age of the wood, where A_0 is the amount of carbon in any living tree, A(t) is the amount of carbon in the wood being dated and t is the age of the wood in years.

For the wheel it was found that A(t) was 88% of the amount of carbon in a living tree.

Is the claim true?

2005 Paper 1

- 7. The function f is of the form $f(x) = \log_b (x a)$. The graph of y = f(x) is shown in the diagram.
 - (a) Write down the values of a and b.
 - (b) State the domain of f.

2005 Paper 2

7. Solve the equation $\log_4(5-x) - \log_4(3-x) = 2$, x < 3.

- 9. The value V (in £ million) of a cruise ship t years after launch is given by the formula $V = 252e^{-0.06335t}$.
 - (a) What was its value when launched?

4

1

(b) The owners decide to sell the ship once its value falls below £20 million. After how many years will it be sold?

2004 Paper 1

9. Solve the equation $\log_2(x+1) - 2\log_2(3) = 3$.

4

2004 Paper 2

- 10. The amount A_t micrograms of a certain radioactive substance remaining after t years decreases according to the formula $A_t = A_0 e^{-0.002t}$, where A_0 is the amount present initially.
 - (a) If 600 micrograms are left after 1000 years, how many micrograms were present initially?

3

(b) The half-life of a substance is the time taken for the amount to decrease to half of its initial amount. What is the half-life of this substance?