Further Calculus

Go to the appropriate Past Paper for the answers

3

2

3

5

3

6

3

2019 Paper 1

- 17. (a) Express $(\sin x \cos x)^2$ in the form $p + q \sin rx$ where p, q and r are integers.
 - (b) Hence, find $\int (\sin x \cos x)^2 dx$.

2019 Paper 1

11. Evaluate
$$\int_{0}^{\frac{\pi}{9}} \cos\left(3x - \frac{\pi}{6}\right) dx.$$

2019 Paper 1

6. Given that
$$y = \frac{1}{(1-3x)^5}$$
, $x \neq \frac{1}{3}$, find $\frac{dy}{dx}$.

2018 Paper 1

14. Evaluate
$$\int_{-4}^{9} \frac{1}{\sqrt[3]{(2x+9)^2}} dx.$$

2018 Paper 1

3. Given
$$h(x) = 3\cos 2x$$
, find the value of $h'\left(\frac{\pi}{6}\right)$.

Specimen 5 Paper 2

10. Given that
$$\int_{\frac{\pi}{8}}^{a} \sin\left(4x - \frac{\pi}{2}\right) dx = \frac{1}{2}, \quad 0 \le a < \frac{\pi}{2},$$

Specimen 5 Paper 1

11. Find the rate of change of the function $f(x) = 4\sin^3 x$ when $x = \frac{5\pi}{6}$.

13. Find
$$\int \frac{1}{(5-4x)^{\frac{1}{2}}} dx$$
, $x < \frac{5}{4}$.

4

2017 Paper 2

11. (a) Show that $\frac{\sin 2x}{2\cos x} - \sin x \cos^2 x = \sin^3 x$, where $0 < x < \frac{\pi}{2}$.

3

3

(b) Hence, differentiate $\frac{\sin 2x}{2\cos x} - \sin x \cos^2 x$, where $0 < x < \frac{\pi}{2}$.

2016 Paper 1

 $5. \quad \text{Find } \int 8\cos(4x+1)dx.$

2

2016 Paper 2

10. (a) Given that $y = (x^2 + 7)^{\frac{1}{2}}$, find $\frac{dy}{dx}$.

2

(b) Hence find $\int \frac{4x}{\sqrt{x^2 + 7}} dx$.

1

2016 Paper 2

11. (a) Show that $\sin 2x \tan x = 1 - \cos 2x$, where $\frac{\pi}{2} < x < \frac{3\pi}{2}$.

4

(b) Given that $f(x) = \sin 2x \tan x$, find f'(x).

2

New 2015 Paper 1

12. The diagram shows part of the graph of $y = a \cos bx$.

The shaded area is $\frac{1}{2}$ unit².

What is the value of $\int_0^{\frac{3\pi}{4}} (a\cos bx) dx$?

2

New 2015 Paper 2

- 7. (a) Find $\int (3\cos 2x + 1) dx$.
 - (b) Show that $3\cos 2x + 1 = 4\cos^2 x 2\sin^2 x$.
 - (c) Hence, or otherwise, find $\int (\sin^2 x 2\cos^2 x) dx$.

2

2

Specimen 4 Paper 1

1. Find
$$\int \frac{3x^3+1}{2x^2} dx$$
, $x \neq 0$.

4

Specimen 4 Paper 1

10. Find the rate of change of the function $f(x) = 4\sin^3 x$ when $x = \frac{5\pi}{6}$.

3

3

2

3

6

Exemplar Paper 2

10. Acceleration is defined as the rate of change of velocity.

An object is travelling in a straight line. The velocity, $v \, \text{m/s}$, of this object, $t \, \text{seconds}$ after the start of the motion, is given by $v(t) = 8 \cos(2t - \frac{\pi}{2})$.

- (a) Find a formula for a(t), the acceleration of this object, t seconds after the start of the motion.
- (b) Determine whether the velocity of the object is increasing or decreasing when
- t=10.
- (c) Velocity is defined as the rate of change of displacement. Determine a formula for s(t), the displacement of the object, given that s(t) = 4 when t = 0.

Exemplar Paper 2

8. Given that $\int_{\frac{\pi}{8}}^{a} 5\sin(4x-\frac{\pi}{2})dx = \frac{10}{4}$, $0 \le a < \frac{\pi}{2}$, calculate the value of a.

Exemplar Paper 1

10. The gradient of a tangent to a curve is given by $\frac{dy}{dx} = 3\cos 2x$.

The curve passes through the point $\left(\frac{7\pi}{6}, \sqrt{3}\right)$. Find y in terms of x.

4

3

2

3

2014 Paper 2

9. Acceleration is defined as the rate of change of velocity.

An object is travelling in a straight line. The velocity, v m/s, of this object, t seconds after the start of the motion, is given by $v(t) = 8\cos(2t - \frac{\pi}{2})$.

- (a) Find a formula for a(t), the acceleration of this object, t seconds after the start of the motion.
- (b) Determine whether the velocity of the object is increasing or decreasing when t = 10.
- (c) Velocity is defined as the rate of change of displacement. Determine a formula for s(t), the displacement of the object, given that s(t) = 4 when t = 0.

5. Given that $\int_4^t (3x+4)^{-\frac{1}{2}} dx = 2$, find the value of t.

5

2014 Paper 2

8. What is the derivative of $(4-9x^4)^{\frac{1}{2}}$?

2

2014 Paper 1

5. Find $\int (2x+9)^5 dx$.

2

2013 Paper 2

6. Given that $\int_0^a 5\sin 3x \ dx = \frac{10}{3}$, $0 \le a < \pi$, calculate the value of a.

2

2013 Paper 1

18. Given that $y = \sin(x^2 - 3)$, find $\frac{dy}{dx}$.

2

2013 Paper 1

16. If $y = 3\cos^4 x$, find $\frac{dy}{dx}$.

2

2012 Paper 1

16. If $y = 3\cos^4 x$, find $\frac{dy}{dx}$.

2

2012 Paper 1

14. Find $\int (2x-1)^{\frac{1}{2}} dx$ where $x > \frac{1}{2}$.

2

2011 Paper 2

6. (a) The expression $3\sin x - 5\cos x$ can be written in the form $R\sin(x+a)$ where R > 0 and $0 \le a < 2\pi$.

Calculate the values of R and a.

4

(b) Hence find the value of t, where $0 \le t \le 2$, for which

$$\int_{0}^{t} (3\cos x + 5\sin x) \ dx = 3.$$

20. On a suitable domain, D, a function g is defined by $g(x) = \sin^2 \sqrt{x-2}$. Which of the following gives the real values of x in D and the corresponding values of g(x)?

2

2011 Paper 1

13. Given that $f(x) = 4 \sin 3x$, find f'(0).

2

2010 Paper 2

6. (a) A curve has equation $y = (2x - 9)^{\frac{1}{2}}$. Show that the equation of the tangent to this curve at the point where x = 9 is $y = \frac{1}{3}x$. 5

1

(b) Diagram 1 shows part of the curve and the tangent.

The curve cuts the x-axis at the point A.

Find the coordinates of point A.

7

(c) Calculate the shaded area shown in diagram 2.

Diagram 2

2011 Paper 2

9. Find $\int (2x^{-4} + \cos 5x) dx$.

5. The graphs of y = f(x) and y = g(x) are shown in the diagram.

 $f(x) = -4\cos(2x) + 3$ and g(x) is of the form $g(x) = m\cos(nx)$.

- (a) Write down the values of m and n.
- (b) Find, correct to one decimal place, the coordinates of the points of intersection of the two graphs in the interval $0 \le x \le \pi$.
- (c) Calculate the shaded area.

5

1

6

2009 Paper 1

18. Given that $f(x) = (4 - 3x^2)^{-\frac{1}{2}}$ on a suitable domain, find f'(x).

2

2008 Paper 1

15. What is the derivative of $(x^3 + 4)^2$?

2

1

1

2008 Paper 2

3. (a) (i) Diagram 1 shows part of the graph of y = f(x), where $f(x) = p\cos x$.

Write down the value of p.

(ii) Diagram 2 shows part of the graph of y = g(x), where $g(x) = q\sin x$.

Write down the value of q.

(b) Write f(x) + g(x) in the form $k\cos(x+a)$ where k > 0 and $0 < a < \frac{\pi}{2}$.

4

(c) Hence find f'(x) + g'(x) as a single trigonometric expression.

2

2007 Paper 1

10. Given that $y = \sqrt{3x^2 + 2}$, find $\frac{dy}{dx}$.

7. Find the value of $\int_0^2 \sin(4x+1) dx$.

Δ

2006 Paper 1

5. A function f is defined by $f(x) = (2x - 1)^5$.

Find the coordinates of the stationary point on the graph with equation y = f(x) and determine its nature.

7

2006 Paper 2

9. If $y = \frac{1}{x^3} - \cos 2x$, $x \ne 0$, find $\frac{dy}{dx}$.

4

2005 Paper 1

5. Differentiate $(1 + 2 \sin x)^4$ with respect to x.

2

2004 Paper 1

6. Given that $y = 3\sin(x) + \cos(2x)$, find $\frac{dy}{dx}$.

3

2004 Paper 1

7. Find $\int_{0}^{2} \sqrt{4x+1} \ dx$.