MATHEMATICS

Higher Grade Extended Unit Test - UNIT 3

Time allowed - 50 minutes

Read Carefully

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Calculators may be used.
- 3. Answers obtained by readings from scale drawings will not receive any credit.
- 4. This Unit Test contains questions graded at all levels.

FORMULAE LIST

Scalar Product: $a \cdot b = |a| |b| \cos \dot{e}$, where \dot{e} is the angle between a and b.

Г

Г

or

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}_1 \boldsymbol{b}_1 + \boldsymbol{a}_2 \boldsymbol{b}_2 + \boldsymbol{a}_3 \boldsymbol{b}_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Trigonometric formulae:

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \operatorname{msin} A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Table of standard derivatives:

f(x)	f'(x)			
$ \sin ax \\ \cos ax $	$a\cos ax$ - $a\sin ax$			

Table of standard integrals:

f(x)	$\int f(x) dx$
sin <i>ax</i> cos <i>ax</i>	$-\frac{1}{a}\cos ax + C$ $\frac{1}{a}\sin ax + C$

_

Section A

In this section the correct answer to each question is given by one of the alternatives A, B, C or D. Indicate the correct answer by writing A, B, C or D opposite the number of the question. Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

1.	which (i)	then that $a = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$ and $b = \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix}$, the of the following is/are correct? a and b are perpendicular	3.	If f(is A B	x) = $(4x + x^2)^3$, the value of $f'(1)$ 41 $\frac{2}{3}$ 75
	(ii)	The magnitude of b is $4\sqrt{3}$		С	450
	(iii)	<i>a</i> is a unit vector		D	1875
	А	(i) only			
	В	(ii) only	4.	Given that $\log_2(x-1) = \log_3 27$, the value of x is	
	С	(i) and (ii)		А	9
	D	(i) and (iii)		В	7
				С	4
				D	82
2.	2. $\int \sin(3x-1)dx$ is equal to		5.		
	А	$\frac{1}{3}\cos(3x-1) + C$			$3 + 5\cos(x - 53 \cdot 1)^{\circ}$ is
	В	$-\frac{1}{3}\cos(3x-1) + C$		А	-5 when $x = 233 \cdot 1^{\circ}$
	С	$3\cos(3x-1) + C$		В	-2 when $x = 53 \cdot 1^{\circ}$
	D	$-\cos(3x-1) + C$		С	3 when $x = 143 \cdot 1^{\circ}$
	Ð			D	-2 when $x = 233 \cdot 1^{\circ}$

Section B ALL QUESTIONS SHOULD BE ATTEMPTED

In this section credit will be given for all correct working.

6. A is the point (2, -4, 4), B is the point (1, -2, 5) and C is the point (-1, 2, 7).

(a) Show that A, B and C are collinear.
(b) Write down the ratio in which B divides AC.
1

7. Find
$$\int \frac{1}{\sqrt[3]{2x+1}} dx$$

8. (a) Express $\sqrt{5}\cos 2x^\circ - 2\sin 2x^\circ$ in the form $k\sin(2x-\alpha)^\circ$ where k and _ are constants and k > 0.

(b) Hence solve the equation $3 + \sqrt{5}\cos 2x^\circ - 2\sin 2x^\circ = 2$, where 180 < x < 360

4

5

4

9. L, M and N are the points (2, 0, -1), (4, -6, 8) and (-5, 7, 0) respectively.

Calculate the size of angle LMN.

10. Find the gradient of the tangent to the curve with equation $y = 2\cos 3x - \sin^2 x$ at the point with *x*-coordinate $\frac{\pi}{2}$.

- 11. A radioactive substance decays according to the formula $M_t = M_o e^{-0.004t}$ where M_o is the initial mass of the substance and M_t is the mass remaining after t days.
 - (a) Show that the time taken for the substance to lose half its mass can be written as $t = 250 \log_e 2$.

4

2

(b) If the initial mass was 500g, calculate the mass remaining after 500 days.

END OF QUESTION PAPER