MATHEMATICS

Higher Grade Extended Unit Test - UNIT 3

Time allowed - 50 minutes

Read Carefully

- Full credit will be given only where the solution contains appropriate working. 1.
- Calculators may be used. 2.
- Answers obtained by readings from scale drawings will not receive any credit. This Unit Test contains questions graded at all levels. 3.
- 4.

FORMULAE LIST

Scalar Product: $a \cdot b = |a| |b| \cos \dot{e}$, where \dot{e} is the angle between a and b.

Г

Г

or

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}_1 \boldsymbol{b}_1 + \boldsymbol{a}_2 \boldsymbol{b}_2 + \boldsymbol{a}_3 \boldsymbol{b}_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Trigonometric formulae:

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \operatorname{msin} A \sin B$$
$$\sin 2A = 2\sin A \cos A$$
$$\cos 2A = \cos^2 A - \sin^2 A$$
$$= 2\cos^2 A - 1$$
$$= 1 - 2\sin^2 A$$

Table of standard derivatives:

f(x)	f'(x)
$ \sin ax \\ \cos ax $	$a\cos ax$ - $a\sin ax$

Table of standard integrals:

f(x)	$\int f(x) dx$
sin <i>ax</i> cos <i>ax</i>	$-\frac{1}{a}\cos ax + C$ $\frac{1}{a}\sin ax + C$

_

Section A

In this section the correct answer to each question is given by one of the alternatives A, B, C or D. Indicate the correct answer by writing A, B, C or D opposite the number of the question. Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

1. Given that
$$\mathbf{a} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix}$, which of the following is/are correct?

- (i) *a* and *b* are perpendicular
- (ii) the magnitude of **b** is $4\sqrt{3}$
- (iii) *a* is a unit vector
 - A. (i) only
 - **B.** (ii) only
 - **C.** (i) and (ii)
 - **D.** (i) and (iii)

2. $\frac{d}{dx}\sin(3x-1)$ is equal to

- A. $\frac{1}{3}\cos(3x-1)$
- **B.** $3\cos(3x-1)$
- C. $-\frac{1}{3}\cos(3x-1)$
- **D.** $-3\cos(3x-1)$

A. $41\frac{2}{3}$ **B.** 75 **C.** 450 **D.** 1875

- 4. Given that $\log_2(x-1) = \log_3 27$, the value of x is
 - A. 9
 B. 7
 C. 4
 D. 82
- 5. The minimum value of $3 + 5\cos(x 53 \cdot 1)^\circ$ is
 - **A.** -5 when $x = 233 \cdot 1^{\circ}$
 - **B.** -2 when $x = 53 \cdot 1^{\circ}$
 - C. 3 when $x = 143 \cdot 1^{\circ}$
 - **D.** -2 when $x = 233 \cdot 1^{\circ}$

End of Section A

Section B ALL QUESTIONS SHOULD BE ATTEMPTED

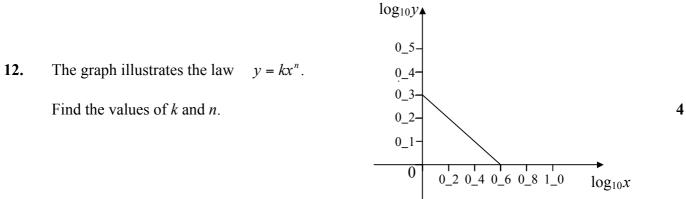
In this section credit will be given for all correct working.

- 6. A is the point (0, 2, 3), B is the point (2, -2, -2) and C is the point (6, y, -12).
 - (a) Given that A, B and C are collinear, calculate the value of y.
 (b) A fourth point, D, divides AC in the ratio 2 : 1. Establish the coordinates of D.
 3

7. Find
$$\int_{1}^{2} (2x-3)^{3} dx$$
 3

8. Solve for x $3\log x + \log 0.75 = \log 6$

9. Given that
$$f(\frac{\pi}{6}) = -2$$
 and $f'(x) = -8\sin 4x$, find an expression for $f(x)$.


10. Given that $\boldsymbol{a} \cdot (\boldsymbol{a} + \boldsymbol{b}) = 26$, $|\boldsymbol{a}| = 4$ and $|\boldsymbol{b}| = 5$, calculate the size of the angle between \boldsymbol{a} and \boldsymbol{b} .

3

11. (a) Express
$$\sin 2x + \sqrt{3} \cos 2x$$
 in the form $k \cos(2x - \alpha)$ where $k > 0$ and $0 \le x \le \frac{\pi}{2}$. 4

Hence find the value of *x* in the interval $0 \le x \le \frac{\pi}{2}$ for which **(b)**

$$\sin 2x + \sqrt{3}\cos 2x = \sqrt{3}$$

END OF QUESTION PAPER