MATHEMATICS

Higher Grade Extended Unit Test - UNIT 2

Time allowed - 50 minutes

Read Carefully

- 1. Full credit will be given only where the solution contains appropriate working.
- Calculators may be used. 2.
- Answers obtained by readings from scale drawings will not receive any credit. This Unit Test contains questions graded at all levels. 3.
- 4.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:	$sin(A \pm B) = sin Acos B \pm cos Asin B$
	$\cos(A \pm B) = \cos A \cos B \min A \sin B$
	$\sin 2A = 2\sin A \cos A$
	$\cos 2A = \cos^2 A - \sin^2 A$
	$= 2\cos^2 A - 1$
	$= 1 - 2\sin^2 A$

Section A

In this section the correct answer to each question is given by one of the alternatives A, B, C or D. Indicate the correct answer by writing A, B, C or D opposite the number of the question. Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

1.	The value of		4.	Given that $\cos \alpha = \frac{2}{2}$, the value of	
		$7 - x - x^2 + x^3$		$\cos 2\alpha$	x is
	when $x = 2$ is			А	$\frac{4}{3}$
	А	-57			[5
	В	-3		В	$\frac{\sqrt{3}}{3}$
	С	51		С	$-\frac{1}{9}$
	D	9			, , [5
2.	For th	e quadratic equation		D	$\frac{4\sqrt{5}}{3}$
		$x^2 - 5x + 3 = 0$		A curve for which $\frac{dy}{dx} = 4x + 1$ passes through (1, -1). If y is expressed in	
	the value of the discriminant is		5.		
	А	-37		terms	of x then $y = \dots$
	В	13		А	$2x^2 + x - 4$
	С	37		В	$2x^2 + x$
	D	63		С	$2x^2 + x + 4$
3.	A circ	ele has equation		D	4

 $x^2 + y^2 - 6x + 4y - 12 = 0$

The length of its radius is

А	1
В	5
С	$2\sqrt{10}$
D	8

Section B ALL QUESTIONS SHOULD BE ATTEMPTED

In this section credit will be given for all correct working.

6. Evaluate
$$\int_{4}^{9} \frac{1-x^2}{\sqrt{x}} dx$$
 6

7. (a) Show that
$$(x-3)$$
 is a factor of $2x^3 - 3x^2 - 11x + 6$

(b) Hence, solve the equation

$$2x^3 - 3x^2 - 11x + 6 = 0$$
3

8. The points P and Q have coordinates (-8, 6) and (4, -5).

Find the equation of the circle which has PQ as its diameter.

9. Solve the equation $2(\cos 2x + 4\sin x) = 5$ in the interval $0 \le x \le 2\pi$.

3

2

5

10. (a) Show that the point (-1, -8) lies on the circle with equation

$$x^2 + y^2 - 4x + 8y - 5 = 0$$
 2

4

5

- (b) Find the equation of the tangent to the circle at the point (-1, -8).
- 11. Show that the line with equation 3x y 10 = 0 is a tangent to the circle $x^2 + y^2 = 10$ and find the point of contact.

END OF QUESTION PAPER