# **MATHEMATICS**

## Higher Grade Extended Unit Test - UNIT 2

Time allowed - 50 minutes

Read Carefully

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Calculators may be used.
- 3. Answers obtained by readings from scale drawings will not receive any credit.
- 4. This Unit Test contains questions graded at all levels.

## FORMULAE LIST

### Circle:

The equation  $x^2 + y^2 + 2gx + 2fy + c = 0$  represents a circle centre (-g, -f) and radius  $\sqrt{g^2 + f^2 - c}$ . The equation  $(x - a)^2 + (y - b)^2 = r^2$  represents a circle centre (a, b) and radius r.

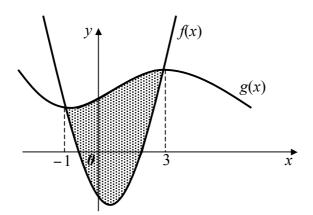
| Trigonometric formulae: | $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$            |
|-------------------------|--------------------------------------------------------------|
|                         | $\cos(A \pm B) = \cos A \cos B \operatorname{msin} A \sin B$ |
|                         | $\sin 2A = 2\sin A \cos A$                                   |
|                         | $\cos 2A = \cos^2 A - \sin^2 A$                              |
|                         | $= 2\cos^2 A - 1$                                            |
|                         | $= 1 - 2\sin^2 A$                                            |

#### Section A

In this section the correct answer to each question is given by one of the alternatives A, B, C or D. Indicate the correct answer by writing A, B, C or D opposite the number of the question. Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

1. A parabola has equation  $y = 12 - (x + 1)^2$ . Which line of the table gives the correct coordinates and the nature of its turning point?

|    | Coordinates | Nature  |
|----|-------------|---------|
| А. | (-1, 12)    | Maximum |
| В. | (1, 12)     | Maximum |
| C. | (1, 12)     | Minimum |
| D. | (-1, 12)    | Minimum |


2. A circle has equation  $x^2 + y^2 - 6x + 10y - 2 = 0$ . Which line of the table correctly identifies the centre and radius of it?

|           | Centre  | Radius      |
|-----------|---------|-------------|
| <b>A.</b> | (-3, 5) | $4\sqrt{2}$ |
| B.        | (-3, 5) | 6           |
| C.        | (3, -5) | 6           |
| D.        | (3, -5) | $4\sqrt{2}$ |

**3.** The following words can be used to describe the roots of a quadratic.

I Real II Equal III Distinct IV Non-real Which of the above words can be used to describe the roots of the equation  $2x^2 + 3x - 4 = 0$ ?

- A. I and II
- **B.** I and III
- C. II and III
- **D.** IV only
- 4. The diagram shows the area bounded by the curves y = f(x) and y = g(x)



Which of the following gives the value of the shaded area?

A. 
$$\int_{-1}^{3} g(x) + f(x) dx$$
  
B.  $\int_{-1}^{3} g(x) - f(x) dx$   
C.  $\int_{-3}^{1} g(x) + f(x) dx$   
D.  $\int_{-3}^{1} g(x) - f(x) dx$ 

5. What is the exact value of  $\cos\left(\frac{2\pi}{3}\right)$ ?

**A.** 
$$-\frac{1}{2}$$
  
**B.**  $\frac{1}{2}$   
**C.**  $\frac{\sqrt{3}}{2}$   
**D.**  $-\frac{\sqrt{3}}{2}$ 

End of Section A

#### Section B ALL QUESTIONS SHOULD BE ATTEMPTED

In this section credit will be given for all correct working.

| 6. | The points A and B have coordinates $(8, 4)$ and $(2, -6)$ respectively. |                                                                                      |   |
|----|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---|
|    | <b>(a)</b>                                                               | Find the equation of the circle which has AB as diameter.                            | 3 |
|    | A tan                                                                    | gent to the circle is drawn at the point $(10, -4)$ .                                |   |
|    | (b)                                                                      | Establish the equation of this tangent.                                              | 3 |
| 7. | Solve                                                                    | the equation                                                                         |   |
|    | 50170                                                                    | $3\sin 2x^\circ = -2\sin x^\circ$ in the interval $0 \le x \le 360$                  | 5 |
|    |                                                                          | $5 \sin 2x = -2 \sin x$ in the interval $0 \le x \le 500$                            | 5 |
| 8. | (a)                                                                      | If $3x^3 - kx^2 - 38x - 24$ is exactly divisible by $(x + 3)$ , find the value of k. | 3 |

(b) Hence, write the expression in fully factorised form when k takes this value.

9. Find 
$$\int \frac{1}{x^2} (\sqrt[3]{x^2} - x^3) dx$$
 5

10. The equation  $kx^2 + (k-3)x + k = 0$  has equal roots.

Find the value of *k* given that k > 0.

11. A curve has as its derivative  $\frac{dy}{dx} = 3 + \frac{6}{x^2}$ . Given that the point (6, 4) lies on this curve, express y in terms of x.

#### END OF QUESTION PAPER

5

4

2