MATHEMATICS

Higher Grade Extended Unit Test - UNIT 1

Time allowed - 50 minutes

Read Carefully

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Calculators may be used.
- 3. Answers obtained by readings from scale drawings will not receive any credit.
- 4. This Unit Test contains questions graded at all levels.

Section A

In this section the correct answer to each question is given by one of the alternatives A, B, C or D. Indicate the correct answer by writing A, B, C or D opposite the number of the question. Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

1. The equation of a line is 3y + 4x = 12. The gradient of a line perpendicular to it is

A.
$$-\frac{4}{3}$$

B. $-\frac{3}{4}$
C. $\frac{3}{4}$
D. $\frac{1}{4}$

2. Two functions, f and g, are defined on suitable domains as $f(x) = \frac{2}{x}$ and $g(x) = x^2 + 3$. The

value of $g(f(\frac{1}{2}))$ is

- A. 19
 B. 4
 C. 0⋅5
 D. 7
- 3. The gradient of the tangent to the curve $y = 2x^3 + 3x$ at the point (2, 3) is
 - A. 22
 B. 27
 C. 57
 D. 63

4. The diagram shows part of the graph $y = a \sin bx^{\circ} + c$.

Which line of the table shows the correct values of *a*, *b* and *c*?

	а	b	С
A.	2	3	2
В.	5	2	2
C.	3	1	2
D.	3	2	2

5. For the recurrence relation $U_{n+1} = 1 \cdot 5U_n - b$ with $U_1 = 26$ and $U_2 = 35$, the value of U_0 is

А.	20
B.	17
C.	4
D.	35

End of Section A

Section B ALL QUESTIONS SHOULD BE ATTEMPTED

In this section credit will be given for all correct working.

6. Two functions are defined on suitable domains and are given as

$$f(x) = 3x - \frac{1}{x}$$
 and $g(x) = x^2 + 6$.

Show clearly that $g(f(x)) = 9x^2 + \frac{1}{x^2}$.

- 7. Triangle ABC has vertices A(9, 8), B(-8, 0) and C(10, -8)
 - (a) Show clearly that the equation of the median through A is

$$2y - 3x + 11 = 0$$

(b) The line through C with gradient -2 meets the median through A at the point T.

Establish the coordinates of T.

8. Given that
$$g(x) = x^{-2}(x^3 - \frac{1}{x^2})$$
, find $g'(x)$

9. A recurrence relation is defined as $U_{n+1} = 0.6U_n + 12$, with $U_0 = 200$.

- (a) Find the limit (L) of the sequence generated by this recurrence relation.
- (b) Find the smallest value of *n* such that $U_n L \le 40$

3

1

4

3

(b) The line joining A and B makes an angle of $_^{\circ}$ with the positive direction of the x – axis.

Calculate the value of _ correct to the nearest degree.

11. The point with coordinates (16, 3) lies on the graph with equation $y = \log_a x + 1$..

Find the value of *a*.

2

3

12. A small open cylindrical glass container has a radius of *r* cm as shown in the diagram.

The **total surface area** (*A*), expressed in terms of *r*, is found to be

$$A(r)=\frac{120}{r}+\pi r^2.$$

Find the radius of the cylinder so that the surface area (A) is at a minimum. Give your answer correct to 2-decimal places.

END OF QUESTION PAPER