Higher Grade Pape	- Unit 3	Mini-Prelim 3
--------------------------	----------	---------------

(Answers + Marking Scheme)

2 marks each (16 marks)

Section A - Answers	1	С	2	B	3	С	4	В
	5	D	6	D	7	С	8	А

Section B - Marking Scheme

Illustration(s) for awarding each mark Give 1 mark for each • 9(a) ans: Q(2, 11, -2)(3 marks) \bullet^1 knows to use section formula \bullet^1 evidence $\bullet^2 \quad \frac{1}{3} \begin{pmatrix} 6\\33\\-6 \end{pmatrix} = \begin{pmatrix} 2\\11\\-2 \end{pmatrix}$ uses section formula correctly \bullet^2 •3 states coordinates of D O(2, 11, -2)**(b)** ans: proof (4 marks) knows condition for perp. vectors \bullet^1 if SQR is right – angled scalar prod. = 0 \bullet^1 •² $\overrightarrow{QS} = \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix}$ •² finds \vec{QS} •³ $\overrightarrow{QR} = \begin{pmatrix} 4 \\ -8 \\ 2 \end{pmatrix}$ •³ finds \overrightarrow{QR} finds scalar product 4 - 16 + 12 = 0 so right angle 10 ans: 2 (5 marks) • $\int_{0}^{1} 6(3-2x)^{-2} dx$ prepares to integrate •² $\frac{6(3-2x)^{-1}}{-1} \times \frac{1}{-2}$ integrates •³ $\begin{bmatrix} 3 \\ 9 - 2x \end{bmatrix}_{0}^{1}$ simplifies •⁴ $\begin{bmatrix} 3 \\ \hline 3 - 2(1) \end{bmatrix} - \begin{bmatrix} 3 \\ (3 - 2(0) \end{bmatrix}$ •⁵ 3 - 1 = 2substitutes values answer

	Give 1 mark for each •	Illustration(s) for awarding each mark				
11	ans: 69·2°, 327·6° (6 marks)					
	• ¹ recognises wave form	• evidence [eg. $k \cos(x - \alpha) = k \cos x \cos \alpha + k \sin x \sin \alpha$]				
	• ² finds k					
	• ³ finds α	• ³ $\tan \alpha = \frac{1}{3}; \alpha = 18 \cdot 4^{\circ}$ Quadrant I				
	 equates to 2 finds 1st value 	• $\sqrt{10}\cos(x-18\cdot 4)^\circ = 2$ • $x = 69\cdot 2^\circ$				
	• ⁶ finds 2^{nd} value					
12	ans: (-1,4) (4 marks)					
	\bullet^1 knows to find derivative	$\bullet^1 \frac{dy}{dx} = 3x^2 - 2x - 4$				
	\bullet^2 equates derivative to 1	• ² $3x^2 - 2x - 4 = 1$ • ³ $(3x - 5)(x + 1) = 0; x = -1$				
	 ³ solves for x and states correct x ⁴ subs value and states coords. 	• $(3x-5)(x+1) = 0; x = -1$ • $(-1)^3 - (-1)^2 - 4(-1) + 2 = 4; (-1, 4)$				
	• subs value and states coords.	• $(-1) - (-1) - 4(-1) + 2 = 4; (-1, 4)$				
13(a)	ans: proof (3 marks)					
	• ¹ finds scalar product	• $a \cdot b = 24 + 0 + 0 = 24$				
	• ^{2} finds magnitude of both vectors	• ² $ \boldsymbol{a} = \sqrt{20}; \boldsymbol{b} = \sqrt{45}$				
	• ³ substitutes in formula and simplifies	$\bullet^3 \frac{24}{\sqrt{20}\sqrt{45}}$				
(b)	ans: $\frac{7}{25}$ (2 marks)					
	• ¹ chooses replacement for $\cos 2\theta$ and subs	• $\cos 2\theta = 2\cos^2 \theta - 1 = 2(\frac{4}{5})^2 - 1$				
	\bullet^2 answer	$\bullet^2 \frac{7}{25}$				

14(a)	ans: -0.00045	(5 marks)	
	 ¹ substitutes into formula ² takes natural logs of both sides ³ releases power ⁴ evaluates for <i>k</i> ⁵ correct rounding 	• ³ • ⁴	$0 \cdot 8 = e^{500k}$ $\log_e 0 \cdot 8 = \log_e e^{500k}$ $\log_e 0 \cdot 8 = 500k \log_e e$ $k = \frac{\log_e 0 \cdot 8}{500}$ $- 0.000446 = -0.00045$
(b)	ans: 11% remains	(2 marks)	
	 ¹ substitutes into formula ² evaluates 		$m_t = 100e^{-0.000446.5000}$ 11
	2		

Sect. B (34 marks)

16 + 34 Total: 50 marks