Mathematics Higher Mini-Prelim 3

NATIONAL QUALIFICATIONS

Assessing Unit 3 + revision from Units 1 & 2

Time allowed - 1 hour 10 minutes

Read carefully

- 1. Calculators may be used in this paper.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$\sin \mathbf{A} \pm B = \sin A \cos B \pm \cos A \sin B$$

$$\cos \mathbf{A} \pm B = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Scalar Product: $a \cdot b = |a||b|\cos\theta$, where θ is the angle between a and b.

or

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}_1 \boldsymbol{b}_1 + \boldsymbol{a}_2 \boldsymbol{b}_2 + \boldsymbol{a}_3 \boldsymbol{b}_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Table of standard derivatives:

f(x)	f'(x)
sin ax cos ax	$a\cos ax \\ -a\sin ax$

Table of standard integrals:

f(x)	$\int f(x) dx$
$\sin ax$ $\cos ax$	$-\frac{1}{a}\cos ax + C$ $\frac{1}{a}\sin ax + C$

In this section the correct answer to each question is given by one of the alternatives **A**, **B**, **C** or **D**. Indicate the correct answer by writing **A**, **B**, **C** or **D** opposite the number of the question on your answer paper.

Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

- 1. A is the point (-4, 6, 5) and B is the point (-1, 3, 2). The components of \overrightarrow{AB} are
 - $\mathbf{A} \qquad \begin{pmatrix} -3 \\ 3 \\ 3 \end{pmatrix}$

 $\mathbf{B} \qquad \begin{pmatrix} -5\\9\\7 \end{pmatrix}$

 $\mathbf{C} \qquad \begin{pmatrix} 3 \\ -3 \\ -3 \end{pmatrix}$

- $\mathbf{D} \qquad \begin{pmatrix} 5 \\ -9 \\ -7 \end{pmatrix}$
- 2. The gradient of the tangent to the curve $y = 3\sin 2x$ at the point where $x = \frac{\pi}{6}$ is
 - $\mathbf{A} \qquad 3\sqrt{3}$
 - **B** 3
 - **C** -3
 - **D** $-3\sqrt{3}$
- 3. The circle $x^2 + y^2 + 11x + 7y + 10 = 0$ cuts the x-axis at the points P and Q.

The length of PQ is

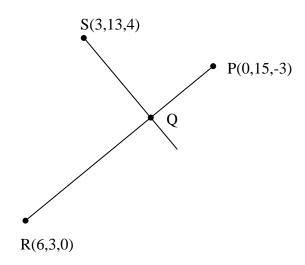
- **A** 3
- **B** 7
- **C** 9
- **D** 11
- 4. Given that C is a constant of integration, then $\int (4x+3)^{-\frac{1}{2}} dx$ equals
 - **A** $(4x+3)^{\frac{1}{2}} + C$
 - **B** $\frac{1}{2}(4x+3)^{\frac{1}{2}} + C$
 - C $\frac{1}{4}(4x+3)^{\frac{1}{2}} + C$
 - $\mathbf{D} \qquad -2(4x+3)^{-\frac{3}{2}} + C$

- 5. The derivative of $(3-4x)^3$ with respect to x is
 - $\mathbf{A} \qquad -\frac{(3-4x)^4}{16}$
 - $\mathbf{B} \qquad \frac{(3-4x)^4}{4}$
 - C $-(3-4x)^4$
 - **D** $-12(3-4x)^2$
- 6. Vector \boldsymbol{a} has components $\boldsymbol{a} = \begin{pmatrix} 3 \\ -2 \\ k \end{pmatrix}$.
 - If |a| = 4, then the value of k is
 - **A** 3
 - **B** −1
 - **C** -13
 - \mathbf{D} $\sqrt{3}$
- 7. Solve $\log_3 3x + \log_3 x = 3$, for x where x > 0.
 - **A** 1
 - **B** $\frac{27}{4}$
 - **C** 3
 - **D** $\frac{3}{4}$
- 8. The maximum value of $3 \sin x 4 \cos x + 5$ is
 - **A** 10
 - $\mathbf{B} = 0$
 - **C** 4
 - **D** 5

SECTION B

ALL questions should be attempted

9. Consider the diagram below.



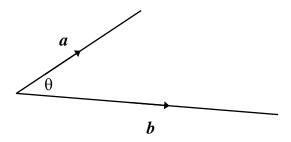
- (a) Given that Q divides PR in the ratio 1:2, find the coordinates of Q.
- (b) Hence prove that angle SQR is a right angle.

3

- 10. Evaluate $\int_0^1 \frac{6}{(3-2x)^2} dx$.
- 11. Solve the equation $\sin x^{\circ} + 3\cos x^{\circ} = 2$ for $0 < x \le 360$.
- 12. Find the coordinates of the point on the curve $y = x^3 x^2 4x + 2$ where the gradient of the tangent is 1 and x < 0.

		(4)	1	6	
13.	The diagram shows two vectors \mathbf{a} and \mathbf{b} where $\mathbf{a} =$	0	and b =	-3	
		(2)	l	0	

The angle between the vectors is θ .



- (a) Show clearly that $\cos \theta = \frac{4}{5}$.
- (b) Hence, or otherwise, find the exact value of $\cos 2\theta$.
- **14.** The mass of radium-226 remaining after a decay period of *t* years can be calculated using the formula

 $M_t = M_0 e^{kt}$, where M_0 is the initial mass, M_t is the mass remaining after t years and k is a constant.

5

- (a) Find the value of the constant k, given that a sample of radium-226 takes 500 years to decay to 80% of its initial mass.
 Give your answer correct to 2 significant figures.
- (b) Hence calculate the approximate percentage mass remaining, of a sample of radium-226, after a period of 5 thousand years.
 Give your answer correct to the nearest percent.

[END OF SECTION B]

[END OF QUESTION PAPER]