Mathematics Higher Mini-Prelim 2

NATIONAL QUALIFICATIONS

Assessing Unit 3 + revision from Units 1 & 2

Time allowed - 1 hour 10 minutes

Read carefully

- 1. Calculators may be used in this paper.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$\sin \mathbf{A} \pm B = \sin A \cos B \pm \cos A \sin B$$

$$\cos \mathbf{A} \pm B = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Scalar Product: $a \cdot b = |a| |b| \cos\theta$, where θ is the angle between a and b.

or

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}_1 \boldsymbol{b}_1 + \boldsymbol{a}_2 \boldsymbol{b}_2 + \boldsymbol{a}_3 \boldsymbol{b}_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Table of standard derivatives:

f(x)	f'(x)
sin ax cosax	$a\cos ax$ $-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x) dx$
$\sin ax$ $\cos ax$	$-\frac{1}{a}\cos ax + C$ $\frac{1}{a}\sin ax + C$

SECTION A

In this section the correct answer to each question is given by one of the alternatives **A**, **B**, **C** or **D**. Indicate the correct answer by writing **A**, **B**, **C** or **D** opposite the number of the question on your answer paper.

Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

- 1. The function $f(x) = 2\sin x^{\circ} + \cos x^{\circ}$ has a **minimum** value of
 - $\begin{array}{ccc} \mathbf{A} & -2 \\ \mathbf{B} & \mathbf{0} \\ \mathbf{C} & -3 \\ \mathbf{D} & -\sqrt{5} \end{array}$
- 2. Which of the following is a correct assumption from the statement $\log_b a = c$?
- 3. What is the value of $\int_0^{\pi} \sin x \, dx$? **A** -2 **B** +1
 - $\begin{array}{c} \mathbf{C} & +2 \\ \mathbf{D} & 0 \end{array}$
- 4. P and Q have position vectors $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$ respectively.

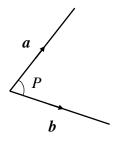
The length of PQ is

- **A** 1
- **B** $\sqrt{17}$
- \mathbf{C} $\sqrt{21}$
- **D** $\sqrt{13}$

- 5. Given that $\cos P = \frac{1}{\sqrt{6}}$, where $0 , the value of <math>\cos 2P$ is
 - $\mathbf{A} \qquad \frac{1}{\sqrt{3}} \\ \mathbf{B} \qquad \frac{2}{\sqrt{6}} \\ \mathbf{C} \qquad \frac{\sqrt{5}}{\sqrt{6}} \\ \mathbf{D} \qquad -\frac{2}{3}$
- 6. An equation is such that $\log x + \log(x+1) = \log 6$, where x > 0.

The value of *x* is

Α	2
B	1
С	3
D	6


7. The gradient of the tangent to the curve $y = \sin x^\circ$ at the point where $x = 60^\circ$ is

A	$\frac{\sqrt{3}}{2}$
B	$\frac{1}{2}$
С	$-\frac{1}{2}$
D	0

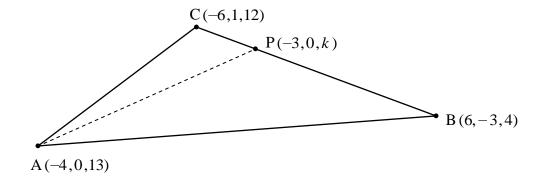
8. Vectors \boldsymbol{a} and \boldsymbol{b} are such that $|\boldsymbol{a}| = |\boldsymbol{b}| = 2$ with *P* being the angle between the vectors.

- **B** 0.4
- **C** 0 · 2
- **D** 0.05

[END OF SECTION A]

SECTION B ALL questions should be attempted

9. A function is defined on a suitable domain as $f(x) = \frac{-16}{(2x-1)^2}$.


(a) Show clearly that the derivative of this function can be written in the form

$$f'(x) = \frac{k}{\left(2x - 1\right)^n}$$

and write down the values of k and n.

- (b) Hence find x when f'(x) = 1 and x > 0.
- 10. In the diagram below A, B and C have coordinates (-4,0,13), (6,-3,4) and (-6,1,12) respectively.

P lies on BC and has coordinates (-3,0,k)

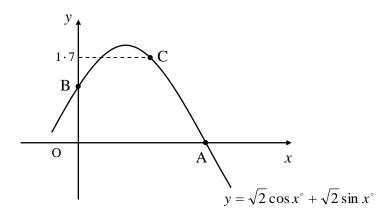
- (a) Find the value of k.
- (b) Hence calculate the size of angle APB.
- 11. A formulae for mass decay is given as $M_t = M_0 e^{-0.02t}$, where t is time elapsed in hours, M_0 is the initial mass in grams and M_t is the mass remaining after t hours.

How long will it take for an initial mass of 40 grams to decay down to 28 grams? **Give your answer correct to the nearest minute.**

3

5

4


3

12. If $\frac{dy}{dx} = \sqrt{4x+1}$, find an expression for y in terms of x given that y = 9.5 when x = 2.

5

2

13. Part of the graph of $y = \sqrt{2} \cos x^\circ + \sqrt{2} \sin x^\circ$ is shown below.

(a) Express
$$y = \sqrt{2}\cos x^\circ + \sqrt{2}\sin x^\circ$$
 in the form $y = k\cos(x-a)^\circ$, where $k > 0$. 3

- (b) Hence state the coordinates of A and B rounding the coordinates to **3 significant figures** where necessary.
- (c) By solving the equation $\sqrt{2}\cos x^\circ + \sqrt{2}\sin x^\circ = 1.7$, find the coordinates of point C. 4

[END OF SECTION B]

[END OF QUESTION PAPER]