1	В			Α	В	С	D
2	D		1		-		
3	В		2				
4	С		3		-		
5	С		4				
6	C		5			-	
7	D		6				
, e	P		7				
0	D		8				
9	C		9			-	
10	Α		10				
11	D		11				
12	D		12				
13	В		13		-		
14	С		14				
15	В		15		-		
16	D		16				
17	В		17				
18	С		18				
19	Ă		19				
20	C		20				
40	U						

Higher Prelim Revision 6

Paper 1

	Give 1 mark for each •	Illustration(s) for awarding each mark
21(a)	ans: Q(9, 7); $(\sqrt{45})$ or $3\sqrt{5}$ (3 marks) • ¹ states centre of C ₂ • ² knows how to find radius • ³ evaluates	• ¹ Q(9, 7) • ² $r^2 = 9^2 + 7^2 - 85$ • ³ $r = \sqrt{45} \text{ or } 3\sqrt{5}$
(b)	ans:proof(3 marks)•1finds distance between centres•2finds total of 2 radii•3conclusion	• ¹ $PQ^2 = 8^2 + 4^2$; $PQ = \sqrt{80} = 4\sqrt{5}$ • ² $\sqrt{5} + 3\sqrt{5} = 4\sqrt{5}$ • ³ distance between centres = sum of radii so circles touch at one point
22	 ans: a = 2 (5 marks) •¹ prepares to integrate •² integrates •³ subs and equates to 8 •⁴ factorises (uses synthetic division) •⁵ realises only solution is 2 	• $\int_{0}^{a} 16 - 24x + 9x^{2} dx$ • $\left[16x - 12x^{2} + 3x^{3}\right]_{0}^{a}$ • $\left[16a - 12a^{2} + 3a^{3} = 8\right]$ • $(a - 2)(3a^{2} - 6a + 4) = 0$ • $a = 2$
23(a)	ans: $y = 4x - 9$ (4 marks)•1 find coordinates of S•2 finds gradient of AB•3 knows to use parallel gradient•4 subs info into equation of straight line	• ¹ S(4, 7) • ² $m_{AB} = \frac{5+3}{-2+4} = 4$ • ³ $m = 4$ • ⁴ $y-7 = 4(x-4)$
(b)	 ans: D(2, -1) (2 marks) •¹ evidence of 'stepping out' or other suitable method •² answer 	 •¹ evidence of suitable strategy •² D(2, -1)

Give 1 mark for each • Illustration(s) for	awarding each mark
24(a) ans: proof (3 marks) \bullet^1 finds $g(f(x))$ \bullet^2 finds $h(g(f(x)))$ \bullet^2 finds $h(g(f(x)))$ \bullet^3 completes proof \bullet^1 $g(f(x)) = (\sin x)^2 = (\sin $	$= \sin^2 x$ $\sin^2 x$ $2x$
(b) ans: $-\frac{\sqrt{3}}{2}$ (3 marks) • ¹ subs value into formula • ² finds equivalent angle • ³ evaluates (3 marks) • ¹ $\cos 2(\frac{5\pi}{12}) = \cos \frac{5\pi}{6}$ • ² $-\cos \frac{\pi}{3}$ • ³ $-\frac{\sqrt{3}}{2}$	<u>z</u>
25 ans: $k = \frac{1}{2}$ (7 marks) • 1 knows to sub line into circle • 2 multiplies • 3 simplifies • 4 solves for y • 5 subs to find x • 6 subs point into line • 7 solves for k • 1 $(3y+10)^2 + y^2 - \frac{y^2}{2} + y^$	-4(3y+10) - 8y - 20 = 0 $y^{2} - 12y - 40 - 8y - 20 = 0$ $= 0; (y+2)^{2} = 0; y = -2$ 4 Total: 70 marks

Higher Prelim Revision 6

Marking Scheme

	Give 1 mark for each •	Illustration(s) for awarding each mark			
1(a)	ans: proof (3 marks)				
	 ¹ subs one function into the other ² multiplies inner bracket ³ multiplies to answer 	• $f(x-3) = (x-3-1)^2 = (x-4)^2$ • $h(x) = [x^2 - 8x + 16]x^2$ • $x^4 - 8x^3 + 16$			
(b)	ans: A(2, 16) (5 marks)				
	• 1 knows to make $\frac{dy}{dx} = 0$ • 2 differentiates	• ¹ $\frac{dy}{dx} = 0$ • ² $\frac{dy}{dx} = 4x^3 - 24x^2 + 32x = 0$ at SP			
	 ³ solves for x ⁴ chooses correct values & subs to find y ⁵ states coordinates of A 	• ³ $4x(x-4)(x-2) = 0; x = 2,4$ • ⁴ $y = (2)^4 - 8(2)^3 + 16(2)^2 = 16$ • ⁵ A(2, 16)			
2(a)	ans: $p = 0.5$ (4 marks)				
	• ¹ gives expression for both limits	• ¹ $L = \frac{6}{1-p}; L = \frac{9}{1-p^2}$			
	\bullet^2 equates limits	• ² $\frac{6}{1-p} = \frac{9}{1-p^2}$			
	 ³ starts to solve ⁴ solves and discards 	• ³ $6-6p^2 = 9-9p; 6p^2 - 9p + 3 = 0$ • ⁴ $3(2p-1)(p-1) = 0; p = 0.5 \text{ or } p = 1$			
(b)	ans: 22 (3 marks)				
	• ¹ finds 1^{st} term for one RR	• $U_1 = \frac{1}{2}(100) + 6 = 56$			
	• ² finds 1^{st} term for other RR	• ² $U_1 = (\frac{1}{2})^2 (100) + 6 = 34$			
	\bullet^3 calculates difference in terms	• 3 56 - 34 = 22			
3	ans: 0° , 113·6°, 246·4°, 180° (5 marks)				
	 ¹ subs for sin 2x^o and simplifies ² factorises 	• $5(2\sin x^{\circ}\cos x^{\circ}) + 4\sin x^{\circ} = 0$ $10\sin x^{\circ}\cos x^{\circ} + 4\sin x^{\circ} = 0$ • $2\sin x^{\circ}(5\cos x^{\circ} + 2) = 0$			
	• ³ solves for $\sin x^{\circ}$ and $\cos x^{\circ}$	• ³ $\sin x^\circ = 0 \text{ or } \cos x^\circ = -\frac{2}{5}$			
	 solutions from sin x^o solutions from cos x^o 	• $x = 0^{\circ}, 180^{\circ}$ • $x = 113 \cdot 6^{\circ}, 246 \cdot 4^{\circ}$			

	Give 1 mark for each •	Illustration(s) for awarding each mark			
4 (a)	ans: P(-2, 0) (3 marks)				
	 equates function to 0 solves using suitable strategy states coordinates of P 	• $x^{3} + 6x^{2} + 12x + 8 = 0$ at P • suitable strategy leading to $x = -2$ • P(-2, 0)			
(b)	ans: 4 square units (4 marks)				
	• ¹ knows how to find area	• $\int_{-2}^{0} x^3 + 6x^2 + 12x + 8 dx$			
	\bullet^2 integrates	• ² $\left[\frac{x^4}{4} + 2x^3 + 6x^2 + 8x\right]_{-2}^{0}$			
	\bullet^3 subs values	• ³ $0 - \left(\frac{(-2)^4}{4} + 2(-2)^3 + 6(-2)^2 + 8(-2)\right)$			
	• ⁴ evaluates	• ⁴ 4 square units			
5(a)	ans: $k = 1$ (3 marks)				
	 finds gradient of CP equates m_{CP} to expression for m_{CP} solves 	• $m_{\text{given line}} = 1; m_{\text{CP}} = -1$ • $m_{\text{CP}} = \frac{k-7}{6} = -1$ • $k - 7 = -6; k = 1$			
(b)	ans: $(x-2)^2 + (y-1)^2 = 18$ (3 marks)				
	 finds midpoint of CP finds radius (length of CQ) subs into general equation of circle 	• ¹ Q(-1, 4) • ² $r^2 = 3^2 + 3^2 = 18$ • ³ $(x-2)^2 + (y-1)^2 = 18$			

	Give 1 mark for each •	Illustration(s) for awarding each mark			
6(a)	 ans: proof (3 marks) ¹ gives expression for length and breadth ² subs into formula and starts to simplify ³ completes simplification to answer 	• ¹ (30-2x) • ² $x(30-2x)^2$ • ³ $x(900-120x+4x^2)$			
(b) (c)	ans: $x = 5$ (5 marks) \bullet^1 knows to make derivative = 0 \bullet^2 takes derivative \bullet^3 factorises and solves \bullet^4 discards \bullet^5 justifies answerans: 2 litres(1 mark)	• ¹ $V'(x) = 0$ • ² $12x^2 - 240x + 900 = 0$ • ³ $12(x-5)(x-15) = 0$ • ⁴ $x = 5$ • ⁵ nature table or 2 nd derivative			
	\bullet^1 calculates volume	• ¹ $20 \times 20 \times 5 = 2000 \text{ cm}^3 = 2 \text{ litres}$			
7	 ans: proof (5 marks) ¹ finds length of AB and cos p ² realises angle DBC = 2p ³ replaces double angle ⁴ subs value for cos p ⁵ evaluates to answer 	• $AB = \sqrt{10}; \cos p = \frac{3}{\sqrt{10}}$ • $\cos DBC = \cos 2p$ • $\cos 2p = 2\cos^2 p - 1$ [or alternative] • $2\left(\frac{3}{\sqrt{10}}\right)^2 - 1$ • $2\left(\frac{9}{10}\right) - 1; \frac{18}{10} - 1 = \frac{8}{10} = \frac{4}{5}$			

	Give 1 mark for each •	Illustration(s) for awarding each mark
8 (a)	ans: proof (3 marks)	
	• ¹ states expression for both distances	• $\frac{3}{k-x}$ and $\frac{4x}{k}$
	 equates rearranges to answer 	• ² $\frac{3}{k-x} = \frac{4x}{k}$ • ³ $3k = 4x(k-x); \ 3k = 4xk - 4x^2 \dots$
(b)	ans: $k = 3$ (3 marks)	
	 ¹ knows discriminant = 0 for equal roots ² finds discriminant ³ solves and discards 	• ¹ $b^2 - 4ac = 0$ for equal roots • ² $b^2 - 4ac = (-4k)^2 - 4.4.3k = 0;16k^2 - 48k = 0$ • ³ $16k(k-3) = 0; k = 3$
(c)	ans: $x = \frac{3}{2}$ (2 marks)	
	 ¹ subs value for k and rewrites expression ² factorises and solves 	• ¹ $4x^2 - 12x + 9 = 0$ • ² $(2x - 3)^2 = 0; \ x = \frac{3}{2}$
9	ans: $p = 32$ (5 marks)	
	• ¹ differentiates	• ¹ $y = x + px^{-\frac{1}{2}}; \frac{dy}{dx} = 1 - \frac{1}{2}px^{-\frac{3}{2}} = 1 - \frac{p}{2x^{\frac{3}{2}}}$
	\bullet^2 subs value to find gradient	• ² $1 - \frac{p}{2(4)^{\frac{3}{2}}} = 1 - \frac{p}{16}$
	• ³ finds gradient of given line	• $x + y = 10; m = -1$
	\bullet^4 equates gradients	$\bullet^4 1 - \frac{p}{16} = -1$
	• ⁵ solves	• ⁵ $-\frac{p}{16} = -2; p = 32$
		Total: 60 marks