D

Paper 1

ANSWERS - Section A

1	D
2	Α
3	B
4	С
5	С
6	Α
7	B
8	С
9	В
10	D
11	D
12	В
13	A
14	С
15	В
16	В
17	A
18	Α
19	С
20	С

	Α	B	С	D
1				-
2				
3				
4				
5			-	
6				
7				
8				
9				
10				
11				-
12				
13				
14				
15				
16				
17				
18	-			
19			-	
20				

ъ

0

Higher Prelim Revision 5

Paper 1

	Give 1 mark for each •	Illustration(s) for awarding each mark
21(a)	ans: P(2, 4) (4 marks)	
	 •¹ knows to make derivative equal to 0 •² finds derivative •³ solves for <i>x</i> •⁴ states coordinates of P 	• $\frac{dy}{dx} = 0$ • $\frac{dy}{dx} = 6x - 3x^2 = 0$
(b)	ans: Q(-1,4) (3 marks)	
	 ¹ knows to equate functions ² uses app method to factorise expression ³ solves and states coordinates of Q 	• ¹ $3x^2 - x^3 = 4$ • ² evidence leading to $(x-2)(x-2)(x+1)$ • ³ $Q(-1, 4)$
(c)	ans: $6\frac{3}{4}$ units ² (6 marks)	
	\bullet^1 knows to use integration	● ¹ ∫
	\bullet^2 uses correct integration	• $\int_{-1}^{2} 3x^2 - x^3 dx$
	\bullet^3 integrates	• ³ $\left[x^3 - \frac{x^4}{4}\right]_{-1}^2$
	• ⁴ subs values	• ⁴ $\left[(2)^3 - \frac{(2)^4}{4} \right] - \left[(-1)^3 - \frac{(-1)^4}{4} \right]$
	• ⁵ evaluates	• ⁵ $(8-4) - (-1 - \frac{1}{4}) = 4 + 1\frac{1}{4} = 5\frac{1}{4}$
	• ⁶ subtracts from 12 to answer	• 6 12-5 $\frac{1}{4}$ = $6\frac{3}{4}$ units ²
22(a)	ans: $p = 1, q = -4, r = 3$ (4 marks)	
	 ¹ substitutes ² multiplies out and reorganises ³ states values of p, q and r ⁴ states values of p, q and r 	 ¹ f(g(a)) = (2-a)² -1 ² 4-4a+a²-1=a²-4a+3 ³ p = 1, q = -4, r = 3 ⁴ award 1 mark for any two correct and 1 mark for third value correct
(b)	ans: $a = 5$ (2 marks)	
	\bullet^1 equates to 8, reorganises and factorises	• $a^2 - 4a + 3 = 8; a^2 - 4a - 5 = 0$ (a-5)(a+1) = 0
	• ² solves and chooses correct value for a	(a-5)(a+1) = 0 • ² a = 5

	Give 1 mark for each •	Illustration(s) for awarding each mark
23	ans: $A(\frac{11\pi}{12}, \frac{1}{2})$ (4 marks)	
	 •¹ equates line & curve, reorganises •² finds values for 2x •³ finds values for x •⁴ states coordinates of A 	• $\sin 2x + 1 = \frac{1}{2}; \sin 2x = -\frac{1}{2}$ • $2x = \frac{7\pi}{6}, \frac{11\pi}{6}$ • $x = \frac{7\pi}{12}, \frac{11\pi}{12}$ • $4 A(\frac{11\pi}{12}, \frac{1}{2})$
24(a)	ans: 60 (2 marks)	
	 ¹ knows how to find limit ² moves term to LHS and divides 	
(b)	ans: 10 (2 marks)	
	• ¹ makes RR equal to 30 • ² solves for U_0	• $0 \cdot 6U_0 + 24 = 30$ [stated or implied] • $0 \cdot 6U_0 = 6; U_0 = 10$
(c)	ans: $a = \frac{2}{5}; b = 36$ (3 marks)	
	• ¹ subs for <i>b</i> and finds expression for limit	• $U_{n+1} = aU_n + 90a; L = \frac{90a}{1-a}$
	• ² equates limit to 60 and solves for a	• ² $\frac{90a}{1-a} = 60; 60-60a = 90a; a = \frac{2}{5};$
	• ³ finds value of b	$\bullet^3 b = 90 \times \frac{2}{5} = 36$

Higher Prelim Revision 4

Paper 2

Marking Scheme

	Give 1 mark for each •	Illustration(s) for awarding each mark
1(a)	ans: $k = 6$ (2 marks) • ¹ knows to substitute point • ² establishes value of k	• ¹ $(0+4)^2 + k^2 = 52$ • ² $k = 6$
(b)	ans: $y = -\frac{2}{3}x + 6$ (4 marks)•1finds coordinates of C1•2finds gradient of radius•3finds gradient of tangent•4substitutes into formula	• ¹ C(-4, 0) • ² $m_{C_1P} = \frac{6}{4} = \frac{3}{2}$ • ³ $m_{\tan} - \frac{2}{3}$ • ⁴ $y = -\frac{2}{3}x + 6$
(c) (d)	ans: $C_2(9, 0)$ (1 mark)•1subs point, solves for x and states pointans: 2·2 units(3 marks)	• ¹ $0 = -\frac{2}{3}x + 6; x = 9; (9,0)$
(0)	ans: 2.2 units (5 marks) • 1 finds radius C ₁ circle • 2 finds distance between centres • 3 establishes d	• radius $C_1 = 7 \cdot 2$ • $C_1C_2 = 13$ • $d = (7 \cdot 2 + 8) - 13 = 2 \cdot 2$
2	ans: 90° , $199 \cdot 5^{\circ}$, $340 \cdot 5^{\circ}$ (5 marks)•1subs for $\cos 2x^{\circ}$ •2multiplies and simplifies•3factorises•4finds two solutions•5finds third solution	• $3(1-2\sin^2 x^\circ) + 4\sin x^\circ - 1 = 0$ • $-6\sin^2 x^\circ + 4\sin x + 2 = 0$ • $2(3\sin x^\circ + 1)(\sin x^\circ - 1) = 0$ • $\sin x^\circ = -\frac{1}{3}; x = 199 \cdot 5^\circ, 340 \cdot 5^\circ$ • $\sin x^\circ = 1; x = 90^\circ$

	Give 1 mark for each •	Illustration(s) for awarding each mark
3(a)	ans: $y = x^2 + \frac{6}{x} - 4$ (4 marks)	
	\bullet^1 knows to integrate	• ¹ $y = \int 2x - \frac{6}{x^2} dx$
	\bullet^2 integrates	$\bullet^2 y = x^2 + \frac{6}{x} + C$
	\bullet^3 subs point	• $3 = 2^2 + \frac{6}{2} + C$
	• ⁴ solves for <i>C</i> and states function	$\bullet^4 y = x^2 + \frac{6}{x} - 4$
(b)	ans: $p = 7$ (1 mark)	
	• ¹ subs point and solves for p	• $p = 3^2 + \frac{6}{3} - 4 = 7$
4(a)	ans: P(3, 0) (2 marks)	
	• ¹ knows to make function equal to 0 • ² solves for <i>x</i> and states cords of P	• ¹ $x^3 - x^2 - 5x - 3 = 0$ • ² $x = 3$; P(3, 0)
(b)	ans: $2y + 3x = 9$ (1 mark)	
	• ¹ subs info into formula for straight line	$\bullet^1 y = -\frac{3}{2}(x-3)$
(c)	ans: $y - 11x = 17$ (4 marks)	
	\bullet^1 knows to take derivative	$\bullet^1 \qquad \frac{dy}{dx} = 3x^2 - 2x - 5$
	\bullet^2 subs to find gradient	• ² $3(-2)^2 - 2(-2) - 5 = 11$
	\bullet^3 subs to find point of contact	• ³ $y = (-2)^3 - (-2)^2 - 5(-2) - 3 = -5$ • ⁴ $y + 5 = 11(x+2); y - 11x = 17$
	\bullet^4 subs into straight line formula	• $y+5=11(x+2); y-11x=17$
(d)	ans: Q(-1, 6) (3 marks)	
	\bullet^1 knows to use sim. eqs.	\bullet^1 evidence
	 solves for x and y states coordinates of Q 	• ² $x = -1$ and $y = 6$ • ³ $Q(-1, 6)$
	• states coordinates of Q	

	Give 1 mark for each •	Illustration(s) for awarding each mark
5(a)	ans: 143-3 <i>gu's</i> (2 marks)	
	 ¹ knows how to calculate answer ² answer 	• $1 0.92^4 \times 200$ • $143.3gu's$
(b)	ans: $135 \cdot 8 gu's$ (3 marks)	
	 ¹ sets up recurrence relation ² repeated calculations to answer ³ repeated calculations to answer 	• ¹ $U_{n+1} = 0.92^4 U_n + 32$ • ² 175.3[after 4 hours]; 157.6[after 8 hours] • ³ 144.9[after 12 hours]; 135.8[after 16 hours]
(c)	ans: yes since lower limit is 80.8 (3 marks)	
	 ¹ knows to find limit ² finds limit ³ realises lower limit is less than 100 	• $L = \frac{32}{1-0.92^4}$ • $L = 112.8$ • B brightness would fall below 100 since lower limit is 80.8
6(a)	ans: proof (3 marks)	
	 ¹ cross multiplies and multiplies out ² brings to LHS ³ rearranges as required 	• $k(x^{2} + 4) = x^{2} - 2x + 1$ • $kx^{2} - x^{2} + 2x + 4k - 1$ • $(k-1)x^{2} + 2x + (4k-1) = 0$
(b)	ans: $k = \frac{5}{4}$ (5 marks)	
	 ¹ states condition for equal roots ² states values of a, b and c ³ substitutes into b² - 4ac 	• $b^{2} - 4ac = 0$ for equal roots [stated/implied] • $a = (k-1); b = 2; c = (4k-1)$ • $2^{2} - 4(k-1)(4k-1) = 0$
	 ⁴ multiplies out and simplifies ⁵ solves for k 	• $4 20k - 16k^2 = 0$ • $5 k = \frac{5}{4}$

	Give 1 mark for each •	Illustration(s) for awarding each mark
7(a)	ans: proof (3 marks)	
	 finds expression for length of shed finds expression for area of g'house simplifies to correct form 	• 1 length of shed $=\frac{3}{x}$ • 2 $A = (x+3)(4+\frac{3}{x})-3$ • 3 $A = 4x+3+12+\frac{9}{x}-3 \rightarrow \text{answer}$
(b)	ans: 15 (5 marks)	
	 ¹ knows to equate derivative to 0 ² prepares to differentiate ³ differentiates ⁴ solves for <i>x</i> ⁵ justifies answer 	• $\frac{dy}{dx} = 0$ • $A(x) = 12 + 4x + 9x^{-1}$ • $A'(x) = 4 - \frac{9}{x^2} = 0$ • $4 - \frac{9}{x^2} = 0; x^2 = \frac{9}{4}; x = \frac{3}{2}$ • y or other acceptable method
8(a)	ans:proof; $k = 10$ (3 marks)•1assembles facts in rt. triangle•2finds sin A•3rationalises denominator & states k	$ \sqrt[6]{\frac{\sqrt{15}}{3}} A $ • ¹ • ² sin A = $\frac{\sqrt{6}}{\sqrt{15}}$ • ³ $\frac{\sqrt{6}}{\sqrt{15}} \times \frac{\sqrt{15}}{\sqrt{15}} = \frac{\sqrt{10}}{5}; k = 10$
(b)	ans: proof (3 marks)	
	 ¹ knows to change cos2<i>A</i> ² substitutes ³ simplifies to required answer 	• $\cos 2A = 1 - 2\sin^2 A$ • $1 - 2(\frac{\sqrt{10}}{5})^2$ • $3 1 - 2 \times \frac{10}{25} = 1 - \frac{4}{5} = \frac{1}{5}$
		Total: 60 marks