St Peter the Apostle High

Mathematics Dept.

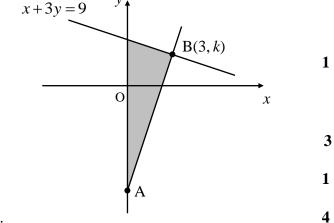
Higher Prelim Revision 3

Paper I - Non~calculator

Time allowed - 1 hour 10 minutes

FORMULAE LIST

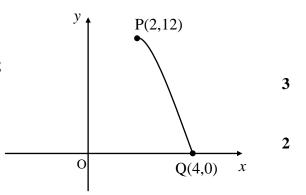
Circle:


The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:	$\sin(A\pm B) = \sin A\cos B \pm \cos A\sin B$
	$\cos(A\pm B) = \cos A\cos B \mp \sin A\sin B$
	$\sin 2A = 2\sin A\cos A$
	$\cos 2A = \cos^2 A - \sin^2 A$
	$= 2\cos^2 A - 1$
	$= 1 - 2\sin^2 A$

All questions should be attempted


- 1. Part of the line with equation x + 3y = 9 is shown in the diagram. B lies on this line and has coordinates (3, k).
 - (a) Find the value of k.
 - (b) Given that the line AB is perpendicular to the line x+3y=9, find the equation of the line AB.
 - (c) Hence write down the coordinates of A.
 - (d) Calculate the area of the shaded triangle.

- 2. (a) A function f has as its derivative $f'(x) = x^3 ax^2 4ax$. Find a if the function has a stationary point at x = 4.
 - (b) Hence find the rate of change of this function at x = -2 and comment on your result.

3. A quadratic function, defined on a suitable domain, is given as $f(x) = 12x - 3x^2$. The diagram shows part of the graph of this quadratic function, y = f(x). The graph passes through the points P(2,12) and Q(4,0) as shown.

- (a) Sketch the graph of y = -f(x) + 6 marking clearly the image points of P and Q and stating their coordinates.
- (b) Given that g(x) = -f(x) + 6, write down a formula for g(x).

2

4. Find a given that
$$\int_{a}^{2} (4+2x) dx = 0$$
, where $a < 2$. 5

6. Two functions are defined on suitable domains as f(x) = x+1 and $g(x) = x^2 + 6x + 13$. Given that the function *h* is such that h(x) = g(f(x)), express *h* in the form

 $h(x) = (x+a)^2 + b$, where a and b are integers,

and hence write down the minimum value of h and the corresponding replacement for x.

8. Find f'(x) when $f(x) = \frac{x^2 - 2\sqrt{x}}{x}$, expressing your answer with positive indices, and hence calculate the value of the gradient of the tangent to the curve y = f(x) at $x = \frac{1}{4}$. **6**

9. What can you say about p if the equation, in x, $\frac{x}{p} + \frac{9}{px} = 1$ has **no real** roots? 6

[END OF QUESTION PAPER]