Mathematics Higher Paper 1 Practice Paper R

Time allowed 1 hour 30 minutes NATIONAL QUALIFICATIONS

**Read carefully** 

Calculators may <u>NOT</u> be used in this paper.

Section A – Questions 1 – 20 (40 marks)

#### Section B (30 marks).

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Answers obtained by readings from scale drawings will not receive any credit.

#### FORMULAE LIST

#### Circle:

The equation  $x^2 + y^2 + 2gx + 2fy + c = 0$  represents a circle centre (-g, -f) and radius  $\sqrt{g^2 + f^2 - c}$ . The equation  $(x-a)^2 + (y-b)^2 = r^2$  represents a circle centre (a, b) and radius r.

**Scalar Product :**  $a \cdot b = |a| |b| \cos \theta$ , where  $\theta$  is the angle between *a* and *b*.

or 
$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$
, where  $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$  and  $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ .

Trigonometric formulae: 
$$sin(A \pm B) = sin A cos B \pm cos A sin B$$
  
 $cos(A \pm B) = cos A cos B \mp sin A sin B$   
 $sin 2A = 2 sin A cos A$   
 $cos 2A = cos^2 A - sin^2 A$   
 $= 2 cos^2 A - 1$   
 $= 1 - 2 sin^2 A$ 

**Table of standard derivatives :** 

| f(x)   | f'(x)       |
|--------|-------------|
| sin ax | a cos ax    |
| cos ax | $-a\sin ax$ |

Table of standard integrals :

| f(x)   | $\int f(x)dx$             |
|--------|---------------------------|
| sin ax | $-\frac{1}{a}\cos ax + C$ |
| cos ax | $\frac{1}{a}\sin ax + C$  |

### SECTION A

# ALL questions should be attempted.

1. K and L have position vectors 
$$\begin{pmatrix} 2\\0\\-1 \end{pmatrix}$$
 and  $\begin{pmatrix} -1\\3\\1 \end{pmatrix}$  respectively.

What is the magnitude of  $\overrightarrow{\text{KL}}$ ?

- A  $\sqrt{5}$
- B  $\sqrt{10}$
- C  $\sqrt{22}$
- D  $\sqrt{55}$

2. If 
$$f(x) = x^3 - 4x + 7$$
, find  $f'(-2)$ .

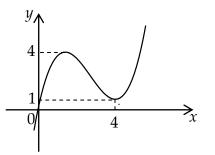
- A 7
- B 8
- C 11
- D 12

3. Find 
$$\int \left( x^{\frac{1}{4}} - x^{-2} \right) dx$$
  
A  $\frac{1}{4} x^{-\frac{3}{4}} + 2x^{-3} + c$   
B  $x^{\frac{3}{4}} + x^{-3} + c$   
C  $x^{\frac{5}{4}} - x^{-1} + c$   
D  $\frac{4}{5} x^{\frac{5}{4}} + x^{-1} + c$ 

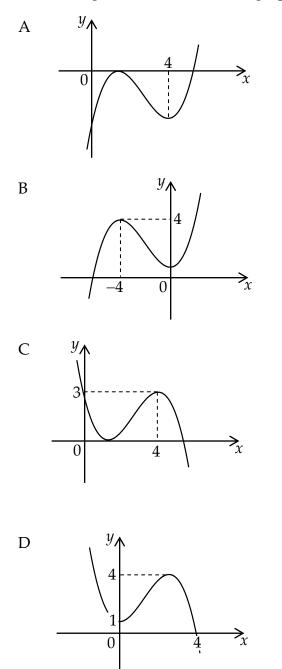
4. A function *f* is defined on the set of real numbers by f(x) = 4x + 5.

Find an expression for f(f(x)).

- A f(f(x)) = 8x + 10
- B f(f(x)) = 16x + 25
- C  $f(f(x)) = 16x^2 + 20x + 5$
- D  $f(f(x)) = 16x^2 + 40x + 25$
- 5. Evaluate  $4\sqrt{2}\sin\frac{\pi}{4}\cos\frac{2\pi}{3}$ .
  - A –12
  - В —2
  - C  $2\sqrt{3}$
  - D  $2\sqrt{6}$
- 6. A circle with centre (-3, 4) passes through the point (-2, 2).What is the equation of the circle?


A 
$$(x-3)^2 + (y+4)^2 = 5$$

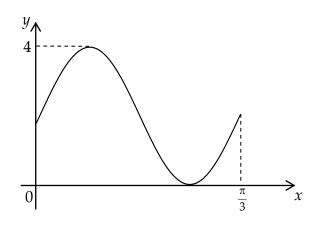
- B  $(x-3)^2 + (y+4)^2 = 61$
- C  $(x+3)^2 + (y-4)^2 = 5$
- D  $(x+3)^2 + (y-4)^2 = 61$
- 7.  $f(x) = 2x^3 x^2 5x + 4$ .


What is the remainder when f(x) is divided by (x+2)?

- А –6
- В —2
- C 0
- D 18

8. The diagram shows the part of the graph of the cubic y = f(x).




Which diagram below shows the graph of y = 4 - f(x)?



9. The graph shown in the diagram has equation  $y = p + 2\sin(qx)$ .

What are the values of *p* and *q*?

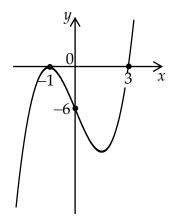
|   | р | q |
|---|---|---|
| А | 2 | 3 |
| В | 4 | 3 |
| С | 2 | 6 |
| D | 4 | 6 |



10. A sequence is generated by the recurrence relation  $u_{n+1} = 7 - 2u_n$ .

If  $u_2 = 5$ , what is the value of  $u_0$ ?

- A 3
- B 5
- C 7
- D 13


11. For what value of *k* does the equation  $kx^2 - 6x + 1 = 0$  have equal roots?

- A 0
- B 1
- C 9
- D 12
- 12. Find  $\int (2x+7)^4 dx$ .
  - A  $\frac{1}{10}(2x+7)^5 + c$
  - B  $\frac{1}{5}(x^2+7x)^5+c$
  - C  $2(2x+7)^3 + c$
  - D  $4(x^2+7x)^3+c$

- 13. Given that  $f'(x) = 6x^2$  and f(1) = 5, find a formula for f(x) in terms of x.
  - A f(x) = 12x 7
  - B  $f(x) = 6x^2 1$
  - C  $f(x) = 2x^3$
  - $D \quad f(x) = 2x^3 + 3$
- 14. What are the coordinates of the centre of the circle with equation

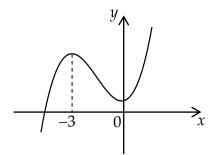
$$3x^2 + 3y^2 - 6x + 18y - 5 = 0?$$

- A (1, -3)
- B (3, -9)
- C (-2, 6)
- D (-6,18)
- 15. The diagram shows part of the graph of a cubic function.

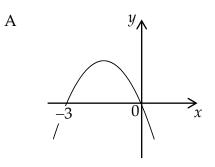


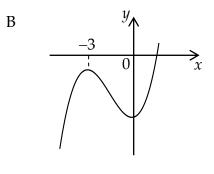
What is the equation of this graph?

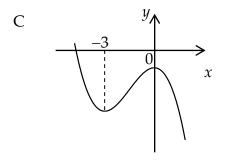
A 
$$y = -2(x-1)^2(x+3)$$

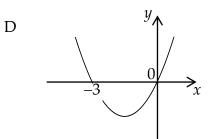

B  $y = -(x+1)^2(x-3)$ 

C 
$$y = (x-1)^2(x+3)$$


D  $y = 2(x+1)^2(x-3)$ 


16. The diagram shows part of the graph of the cubic y = f(x).


There are stationary points at x = 0 and x = -3.




Which diagram below shows the graph of y = f'(x)?







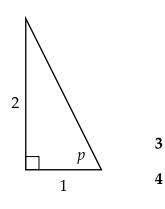


17. If  $4x^2 + 8x - 1$  is expressed in the form  $4(x + p)^2 + q$ , what is the value of *q*?

- А –5
- В —2
- С –1
- D 0

18. If  $3\log_2 t - \log_2 5 = 3$ , find the value of *t*.

- A  $\frac{8}{3}$ B  $\sqrt[3]{40}$ C  $\frac{13}{3}$ D 5
- 19. If  $p = 4x^{-3}$  find the rate of change of *p* with respect to *x* when x = 2.
  - A -12B -3C  $-\frac{3}{4}$ D  $\frac{1}{2}$
- 20. What is the solution of  $8-2x-x^2 < 0$ ?
  - A -2 < x < 4
  - B x < -2 or x > 4
  - C x < -4 or x > 2
  - D -4 < x < 2


#### End of Section A

#### **SECTION B**

#### ALL questions should be attempted.



- **22.** Show that the line with equation y = 2x + 10 is a tangent to the circle with equation  $x^2 + y^2 2x 4y 15 = 0$  and find the coordinates of the point of contact of the tangent and circle.
- **23.** The diagram shows a right-angled triangle with height 2 units, base 1 unit and an angle of *p*.
  - (*a*) Find the exact values of:
    - (i)  $\cos p$ ;
    - (ii)  $\cos 2p$ .
  - (*b*) By writing 3p = 2p + p, find the exact value of  $\cos 3p$ .



**24.** A function *f* is defined by  $f(x) = x^3 - 2x^2 - 4x + 1$ , where  $0 \le x \le 3$ .

Find the maximum and minimum values of *f*.

Marks

6

5

4

4

# **25.** (*a*) Express $2\sqrt{2}\cos x^\circ - 2\sqrt{2}\sin x^\circ$ in the form $k\cos(x-a)^\circ$ , where k > 0 and $0 \le a < 360$ .

- (b) Find:
  - (i) the maximum value of  $3+2\sqrt{2}\sin x^\circ 2\sqrt{2}\cos x^\circ$ ;
  - (ii) a value of *x* where this maximum value occurs in the interval  $0 \le x < 360$ . **4**

## End of question paper