Mathematics Higher Paper 2 Practice Paper P Time allowed 1 hour 10 minutes NATIONAL QUALIFICATIONS

Read carefully

- 1 Calculators may be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product : $a \cdot b = |a| |b| \cos \theta$, where θ is the angle between *a* and *b*.

or
$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$
, where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:
$$sin(A \pm B) = sin A cos B \pm cos A sin B$$

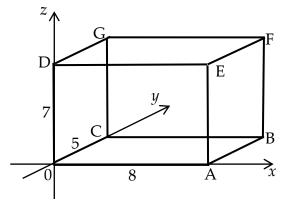
 $cos(A \pm B) = cos A cos B \mp sin A sin B$
 $sin 2A = 2 sin A cos A$
 $cos 2A = cos^2 A - sin^2 A$
 $= 2 cos^2 A - 1$
 $= 1 - 2 sin^2 A$

Table of standard derivatives :

f(x)	f'(x)
sin ax	a cos ax
cos ax	$-a\sin ax$

Table of standard integrals :

f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax + C$
cos ax	$\frac{1}{a}\sin ax + C$


ALL questions should be attempted.

Marks

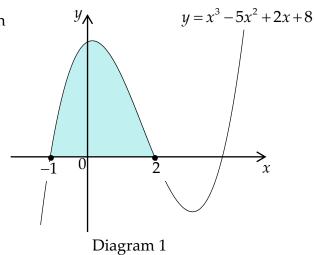
6

6

- **1.** (*a*) Given that (x+1) is a factor of $2x^3 + 3x^2 + kx 6$, find the value of *k*. **3**
 - (b) Hence, or otherwise, solve $2x^3 + 3x^2 + kx 6 = 0.$ 4
- **2.** OABC, DEFG is a rectangular prism as show.

OA is 8 units long, OC is 5 units and OD is 7 units.

(a)	Write down the coordinates of B and G.	2


- (*b*) Calculate the size of angle BEG.
- 3. A circle, centre C, has equation $x^2 + y^2 4x 2y 20 = 0$.

(<i>a</i>)	Find the centre C and radius of this circle.	2
(<i>b</i>)	(i) Show that the point $P(5, -3)$ lies on the circumference of the circle.	
	(ii) Find the equation of radius CP.	4
(<i>c</i>)	Find the equation of the chord which passes through (7,1) and is perpendicular to radius CP.	3

4. Solve $3\cos 2x = 11\cos x - 6$ for $0 \le x < 2\pi$.

5. (*a*) Diagram 1 shows part of the graph with equation $y = x^3 - 5x^2 + 2x + 8$.

Calculate the shaded area.

5

(b) Given that $\int_{-1}^{p} (x^{3} - 5x^{2} + 2x + 8) dx = 12 \cdot 13$ find the total shaded area in diagram 2. $\int_{-1}^{p} 0 dx = 12 \cdot 13$

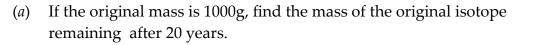
Diagram 2

2

5

6. Find the smallest integer value of *c* for which

$$g(x) = (x-2)(x^2-2x+c)$$


has only one real root.

7. (a) Write
$$2\sin x + \sqrt{5}\cos x$$
 in the form $k\sin(x+a)$, where $k > 0$ and $0 \le a < \frac{\pi}{2}$. 4

(*b*) Sketch the graph of
$$y = 4 \sin x + 2\sqrt{5} \cos x$$
 for $0 \le x \le 2\pi$.

4

8. For a particular radioactive isotope, the mass of the original isotope remaining, *m* grams, after time *t* years is given by $m = m_0 e^{-0.18t}$ where m_0 is the original mass of the isotope.

The half-life of the isotope is the time taken for half the original mass to decay.

(*b*) Find the half life of this isotope.

9. Find
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \left(\frac{\sin 4x}{\sin 2x}\right) dx.$$

5

2

3

End of Question Paper