Mathematics Higher Paper 1 Practice Paper P

Time allowed 1 hour 30 minutes NATIONAL QUALIFICATIONS

Read carefully

Calculators may <u>NOT</u> be used in this paper.

Section A – Questions 1 – 20 (40 marks)

Section B (30 marks).

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product : $a \cdot b = |a| |b| \cos \theta$, where θ is the angle between *a* and *b*.

or
$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$
, where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:
$$sin(A \pm B) = sin A cos B \pm cos A sin B$$

 $cos(A \pm B) = cos A cos B \mp sin A sin B$
 $sin 2A = 2 sin A cos A$
 $cos 2A = cos^2 A - sin^2 A$
 $= 2 cos^2 A - 1$
 $= 1 - 2 sin^2 A$

Table of standard derivatives :

f(x)	f'(x)
sin ax	a cos ax
cos ax	$-a\sin ax$

Table of standard integrals :

f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax + C$
cos ax	$\frac{1}{a}\sin ax + C$

SECTION A

ALL questions should be attempted.

1. A sequence is defined by the recurrence relation

$$u_{n+1} = 2u_n - 5, \ u_0 = 6$$

What is the value of u_2 ?

- A 9
- B 6
- С –1
- D -5
- 2. Here are two statements about the line with equation 3x + 4y 8 = 0.
 - (1) This line is parallel to a line with gradient $-\frac{3}{4}$.
 - (2) This line cuts the *y*-axis at the point (0, 8).

Which of the following is true?

- A Neither statement is correct.
- B Only statement (1) is correct.
- C Only statement (2) is correct.
- D Both statements are correct.
- 3. Functions *f* and *g* are defined on suitable domains by

$$f(x) = 3x + 5$$
 and $g(x) = 2 - x$.

Find an expression for f(g(x)).

A
$$f(g(x)) = 11 - 3x$$

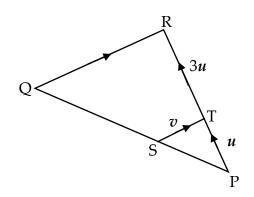
- $B \quad f(g(x)) = 2x + 7$
- C $f(g(x)) = 5 + 6x 3x^2$
- D $f(g(x)) = 10 + x 3x^2$

4. A curve has equation $y = x^3 - 2x + 5$.

What is the gradient of the tangent at the point where x = 2?

- A 1
- B 2
- C 9
- D 10

5. A circle with centre (-2, 1) passes through the point (5, -2).

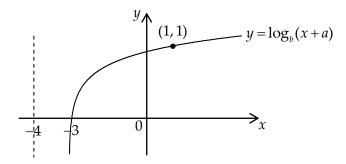

What is the equation of the circle?

- A $(x+2)^{2} + (y-1)^{2} = 58$ B $(x+2)^{2} + (y-1)^{2} = 10$ C $(x-2)^{2} + (y+1)^{2} = 58$
- D $(x-2)^2 + (y+1)^2 = 10$
- 6. Find $\int \frac{2}{\sqrt[3]{x}} dx$. A $\frac{3}{2}x^{-\frac{4}{3}} + c$ B $3x^{\frac{2}{3}} + c$ C $\frac{2}{3}x^{\frac{4}{3}} + c$ D $\frac{2}{3}x^{\frac{5}{3}} + c$
- 7. $g(x) = x^3 2x^2 + x + 7$.

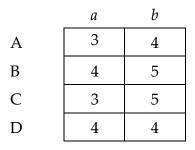
What is the remainder when g(x) is divided by (x+1)?

- А –1
- B 0
- C 3
- D 7

8. Vectors *u* and *v* are shown in the diagram below.


|QR| = 3|ST|

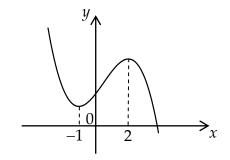
Find \overrightarrow{PQ} in terms of **u** and **v**.


- A 3u+v
- B 3u-4v
- C 4u + 4v
- D 4u-3v
- 9. P and Q are the points with coordinates (-1, 0, 5) and (2, 3, 3) respectively.
 - If $\overrightarrow{PR} = 2\overrightarrow{PQ}$, find the coordinates of R.
 - A (1, 6, 21)
 - B (2, 6, 16)
 - C (4, 3, -7)
 - D (5, 6, 1)
- 10. What is the exact value of $\sin \frac{5\pi}{4} + \cos \frac{\pi}{4}$?
 - A –2
 - B 0
 - C 1
 - D 2

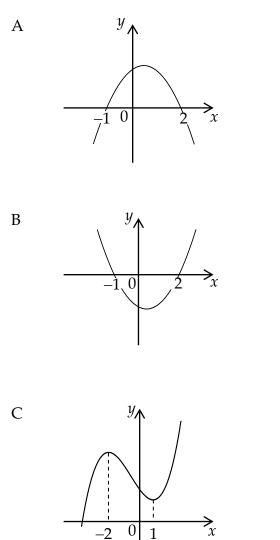
- 11. Find $\int 5\cos(2x-1) \, dx$.
 - A $\frac{5}{2}\sin(2x-1)+c$ B $-10\sin(2x-1)+c$ C $\frac{5}{2}\cos(2x-1)+c$
 - D $-10\cos(2x-1)+c$
- 12. Given that $\log_2 y = 3\log_2 x + \log_2 8$, express *y* in terms of *x*.
 - A y = 3x + 3
 - B y = 3x + 8
 - C $y = 8x^3$
 - $D \quad y = x^3 + 8$
- 13. Given that $y = \sin^4 x$, find $\frac{dy}{dx}$.
 - A $\sin^3 x$
 - B $4\cos^3 x$
 - C $4\sin^3 x \cos x$
 - D $4\cos^3 x \sin x$
- 14. If $5-6x-x^2$ is written in the form $p-(x+q)^2$, what is the value of p?
 - A -4
 - В —1
 - C 5
 - D 14

- 15. Solve $\tan^2 x = \frac{1}{3}$ for $\frac{\pi}{2} < x < \pi$. A $\frac{3\pi}{4}$ B $\frac{4\pi}{5}$ C $\frac{5\pi}{6}$ D $\frac{6\pi}{7}$
- 16. The diagram shows the graph with equation $y = \log_b(x + a)$.

What are the values of *a* and *b*?

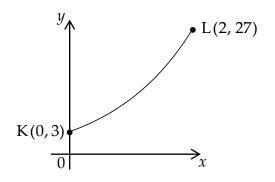


17. What is the nature of the roots of the quadratic equation $x^2 + 10x = 25$?


- A Two real equal roots
- B Two real distinct roots
- C No real roots
- D Three real distinct roots

18. The diagram shows part of the graph of cubic with equation y = g(x).

The graph has turning points at x = -1 and x = 2.


Which diagram below shows the graph of y = g'(x)?

 $arrow_{\chi}$

D

- 19. Solve $x^2 8x + 15 \ge 0$.
 - A $-5 \le x \le -3$
 - B $x \le -5$ or $x \ge -3$
 - C $3 \le x \le 5$
 - D $x \le 3 \text{ or } x \ge 5$
- 20. The diagram shows part of the curve y = f(x).

The curve passes through the points K(0, 3) and L(2, 27).

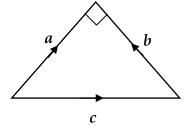
Which of the following represents the equation of the curve?

- A $y = x^2 + 3$
- B $y = 3^{x+1}$
- C $y = e^{x+3}$
- D $y = 3^x + 24$

End of Section A

SECTION B

ALL questions should be attempted.


				Marks
21.	A function <i>f</i> is defined by $f(x) = 2x^3 - 3x^2$, where <i>x</i> is a real number.			
	(a)		d the coordinates of the points where the curve with equation $f(x)$ crosses the x and y -axes.	3
	(<i>b</i>) Find the stationary points on the curve $y = f(x)$ and determine their nature.			6
	(C)	(i)	Sketch the curve $y = f(x)$.	
		(ii)	Hence solve $2x^3 > 3x^2$.	3

22. Two sequences are generated by the recurrence relations

$$u_{n+1} = 0 \cdot 4u_n + 8 \cdot 4$$
$$v_{n+1} = kv_n + 2$$

The two sequences approach the same limit as $n \rightarrow \infty$.

- (a) Evaluate this limit.
 - (*b*) Hence determine the value of *k*.
- 23. Given that $\sin a = \frac{4}{5}$ and $\sin b = \frac{2}{\sqrt{5}}$, where $0 \le a < \frac{\pi}{2}$ and $0 \le b < \frac{\pi}{2}$, find the exact values of :
 - (a) $\sin(a+b)$;
 - (b) $\tan(a+b)$.
- **24.** In the triangle opposite |a| = |b| = 2 units

2

2

4

4

6

Find $a \cdot (a+b+c)$

End of question paper