Mathematics Higher Paper 1 Practice Paper N

Time allowed 1 hour 30 minutes NATIONAL QUALIFICATIONS

Read carefully

Calculators may <u>NOT</u> be used in this paper.

Section A – Questions 1 – 20 (40 marks)

Section B (30 marks).

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product : $a \cdot b = |a| |b| \cos \theta$, where θ is the angle between *a* and *b*.

or
$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$
, where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:
$$sin(A \pm B) = sin A cos B \pm cos A sin B$$

 $cos(A \pm B) = cos A cos B \mp sin A sin B$
 $sin 2A = 2 sin A cos A$
 $cos 2A = cos^2 A - sin^2 A$
 $= 2 cos^2 A - 1$
 $= 1 - 2 sin^2 A$

Table of standard derivatives :

f(x)	f'(x)
sin ax	a cos ax
cos ax	$-a\sin ax$

Table of standard integrals :

f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax + C$
cos ax	$\frac{1}{a}\sin ax + C$

SECTION A

ALL questions should be attempted.

1. A sequence is defined by the recurrence relation $u_{n+1} = 2u_n + 1$, $u_0 = 3$.

What is the value of u_2 ?

- A 1
- B 5
- C 11
- D 15
- 2. The line with equation kx 2y + 9 = 0 is parallel to the line with gradient 7. What is the value of *k*?
 - A -7
 - $B -\frac{1}{7}$ C 7
 - D 14
- 3. A circle has equation $x^2 + y^2 8x + 2y 1 = 0$.

What is the radius of this circle?

- A $\sqrt{6}$ units
- B $\sqrt{7}$ units
- C $\sqrt{18}$ units
- D $\sqrt{69}$ units

- 4. What is the derivative of $\frac{x^3-2}{3x}$ with respect to *x*?
 - A $\frac{2}{3}x + \frac{2}{3}x^{-2}$ B $6x + 6x^{-2}$ C $2x^{2}$
 - D $\frac{2}{3}x^3 + \frac{2}{3}$

5. Find
$$\int \frac{1}{2x^4} dx.$$

A $-\frac{1}{8x^3} + c$
B $-\frac{1}{6x^3} + c$
C $\frac{1}{8x^3} + c$
D $\frac{5}{2x^5} + c$

- 6. If $x^2 12x + 37$ is written in the form $(x p)^2 + q$, find the value of q.
 - A 1
 - B 25
 - C 31
 - D 37
- 7. A sequence is generated by the recurrence relation $u_{n+1} = 0 \cdot 8u_n + 16$. What is the limit of this sequence as $n \to \infty$?
 - A 2
 - B $13\frac{1}{4}$
 - C 16
 - D 80

8. A circle with centre (-1, 5) passes through the point (2, 7).

What is the equation of the circle?

- A $(x-1)^2 + (y+5)^2 = 145$
- B $(x-1)^2 + (y+5)^2 = 13$
- C $(x+1)^2 + (y-5)^2 = 145$
- D $(x+1)^2 + (y-5)^2 = 13$
- 9. The vectors *p* and *q* with components $p = \begin{pmatrix} 1 \\ k \\ 2 \end{pmatrix}$ and $q = \begin{pmatrix} k \\ -3 \\ -2 \end{pmatrix}$ are perpendicular.
 - What is the value of *k*?
 - A –2
 - В —1
 - C 0
 - D 1
- 10. Here are two statements about the equation $2x^2 8x + 3 = 0$
 - (1) The roots are real;
 - (2) The roots are irrational.

Which of the following is true?

- A Neither statement is correct.
- B Only statement (1) is correct.
- C Only statement (2) is correct.
- D Both statements are correct.

11. What is the value of $\cos \frac{5\pi}{3} - \tan \frac{7\pi}{4}$?

- A -1
- B $-\frac{1}{2}$
- C $\frac{\sqrt{3}}{2}$
- D $\frac{3}{2}$

- 12. Given that $\log_2 \frac{1}{8} = p$, find the value of *p*.
 - A –3
 - B –2
 - $C = \frac{1}{64}$
 - D 3

13. Find
$$\int (3x-11)^5 dx$$

A $\frac{1}{15}(3x-11)^4 + c$
B $\frac{1}{2}(3x-11)^4 + c$
C $\frac{1}{18}(3x-11)^6 + c$
D $15(3x-11)^6 + c$

- 14. K and L are the points with coordinates (0, -1, 4) and (3, -2, 5) respectively.
 - If $\overrightarrow{\text{KM}} = 3\overrightarrow{\text{KL}}$, find the coordinates of M.
 - A (1, -1, 3) B (1, 0, -1)
 - C (9, -4, 7)
 - D (9, -9, 27)

15.
$$h(x) = \frac{4}{x^2 - 2x - 8}$$
.

For what values of *x* is h(x) undefined?

- A –2 and 4 B –1 and 2
- C 0 and 4
- D 2 and -4

- 16. Here are two statements about the graph with equation $y = a^x b$, shown opposite.
 - (1) 0 < a < 1;
 - (2) *y* is always increasing

Which of the following is true?

- A Neither statement is correct.
- B Only statement (1) is correct.
- C Only statement (2) is correct.
- D Both statements are correct.

17. The diagram shows part of the graph of a cubic.

What is the equation of this graph?

A
$$y = -32(x+2)(x-2)(x-4)$$

B
$$y = (x+2)(x-2)(x-4)$$

- C y = -2(x-2)(x+2)(x+4)
- D y = 4(x-2)(x+2)(x+4)

18. Given that $\log_4 y = 2 - \log_4 5x$, express *y* in terms of *x*.

A
$$y = \frac{2}{5x}$$

B $y = \frac{16}{5x}$
C $y = \frac{1}{25x^2}$
D $y = 25x^2$

19. If $p \cdot (p-q) = 18$ and |p| = 3, find the value of $p \cdot q$

- A –15
- В —9
- C 2
- D 15

End of Section A

SECTION B

ALL questions should be attempted.

Marks y A Triangle PQR has vertices P(-3, 5), 21. Р Q(7, 3) and R(-1, -5), as shown. Q arrow x0 R

(a)	Find the equation of the median RM.	3
(b)	Find the equation of the altitude AP.	3
(C)	Find the coordinates of the point of intersection of RM and AP.	2

- Find the stationary points on the curve given by $y = x^3 9x^2 + 24x 2$ and 22. determine their nature.
- Functions *f* and *g* are defined on suitable domains by 23. *(a)*

$$f(x) = 2x^2 + 5$$
 and $g(x) = x - 1$

Find f(g(x)).

Sketch the curve with equation y = f(g(x)). (*b*)

24. (a) Show that
$$2\sin\left(x + \frac{\pi}{6}\right) - 2\cos x = \sqrt{3}\sin x - \cos x.$$
 2

- Express $\sqrt{3} \sin x \cos x$ in the form $k \sin(x-a)$ where k > 0 and $0 < a < \frac{\pi}{2}$. *(b)* 4
- Hence, or otherwise, solve $2\sin\left(x+\frac{\pi}{6}\right) = 2\cos x + \sqrt{3}$, where $0 \le x \le 2\pi$. (C) 4

End of question paper

7

2

3