

2 marks

5.

$$2\cos x - \sqrt{2} = 0 \Rightarrow 2\cos x = \sqrt{2}$$

$$\Rightarrow \cos x = \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$y_{\overline{2}} = \frac{\sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\frac{\sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\frac{\sqrt{2}}{\sqrt{2}}$$

To understand the role k plays in this

2 marks

• You are using:

$$\int_{a}^{b} f(x)dx = \left[F(x)\right]_{a}^{b} = F(b) - F(a)$$

where F(x) is the result of integrating f(x).

• You should know: $a^{\frac{1}{2}} = \sqrt{a}$ HMRN: p 49

5 marks

Practice Paper M

1. (*a*) $3\sin x^\circ - \cos x^\circ = k \sin (x - a)^\circ$ $\Rightarrow 3\sin x^{\circ} - \cos x^{\circ}$ $= k \sin x^{\circ} \cos a^{\circ} - k \cos x^{\circ} \sin a^{\circ}$ 1 now equate the coefficients of $\sin x^{\circ}$ and $\cos x^{\circ}$ $k\cos a^{\circ} = 3 \\ k\sin a^{\circ} = 1$ since both $\sin a^{\circ}$ and $\cos a^{\circ}$ are positive, a° is in 1 the 1st quadrant. Divide: $\frac{k\sin a^{\circ}}{k\cos a^{\circ}} = \frac{1}{3} \Longrightarrow \tan a^{\circ} = \frac{1}{3}$ so $a^{\circ} = \tan^{-1}\left(\frac{1}{3}\right) = 18.4^{\circ}$ 1 (to 1 decimal place) Square and add: $(k \cos a^{\circ})^{2} + (k \sin a^{\circ})^{2} = 3^{2} + 1^{2}$ $\Rightarrow k^2 \cos^2 a^\circ + k^2 \sin^2 a^\circ = 9 + 1$ $\Rightarrow k^2(\cos^2 a^\circ + \sin^2 a^\circ) = 10$ $\Rightarrow k^2 \times 1 = 10 \Rightarrow k^2 = 10$ $\Rightarrow k = \sqrt{10} (k > 0)$ 1 So $3\sin x^\circ - \cos x^\circ$ $=\sqrt{10}\sin(x-18\cdot4)^{\circ}$ (correct to 1 decimal place) 4 marks

Stationary Points

Any stationary point on the graph y = f(x) has a zero value for the gradient.
 So on y = f'(x), the graph that shows the gradient values, an x-axis intercept

3 marks

