# Mathematics

Higher

Practice Papers for SQA Exams Exam M Higher Paper 2

## You are allowed 1 hour, 10 minutes to complete this paper.

### You may use a calculator.

Full marks will only be awarded where your answer includes relevant working.

You will not receive any marks for answers derived from scale drawings.

#### FORMULAE LIST

**Trigonometric formulae** sin  $(A \pm B) = sin A cos B \pm cos A sin B$   $cos (A \pm B) = cos A cos B \mp sin A sin B$  sin 2A = 2sin A cos A  $cos 2A = cos^2 A - sin^2 A$   $= 2cos^2 A - 1$  $= 1 - 2sin^2 A$ 

## Circle

The equation  $x^2 + y^2 + 2nx + 2py + c = 0$  represents a circle centre (-n, -p) and radius  $\sqrt{n^2 + p^2 - c}$ .

The equation  $(x - a)^2 + (y - b)^2 = r^2$  represents a circle centre (a, b) and radius r.

# Table of standard integrals

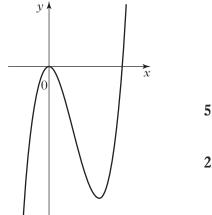
| f(x)   | $\int f(x)dx$             |
|--------|---------------------------|
| sin ax | $-\frac{1}{a}\cos ax + C$ |
| cos ax | $\frac{1}{a}\sin ax + C$  |

Table of standard derivatives

| f(x)      | f'(x)       |
|-----------|-------------|
| $\sin ax$ | $a \cos ax$ |
| cos ax    | $-a\sin ax$ |

**Scalar Product**  $a.b = |a| |b| \cos \theta$ , where  $\theta$  is the angle between a and b

or 
$$\boldsymbol{a}.\boldsymbol{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where  $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$  and  $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ .


3

- 1. (a) Express  $3\sin x^\circ - \cos x^\circ$  in the form  $k\sin(x-a)^\circ$  where k > 0 and  $0 \le a \le 90$ 4
  - (b) Hence solve the equation  $3 \sin x^\circ \cos x^\circ = 1$  for  $0 \le x \le 90$
- The vectors  $\overrightarrow{BA}$  and  $\overrightarrow{BC}$  have components  $\begin{pmatrix} -2\\3\\5 \end{pmatrix}$  and  $\begin{pmatrix} 1\\-1\\3 \end{pmatrix}$  respectively. Calculate 2. the size of angle ABC.
- Prove that for all values of *c* the equation  $x^2 2x + c^2 + 2 = 0$  has no real roots. 3.
- 4. The diagram shows the graph with equation  $y = \frac{1}{3}x^3 - 2x^2$ 
  - (a) A tangent to this curve has gradient -4. Find the *x*-coordinate of the point of contact
  - (b) Hence find the equation of this tangent.
- 5. A drug is given to a patient. The concentration,  $C_t$  milligrams per millilitre (mg/ml), of the drug in the patient's blood t hours after it is administered is given by the formula:

$$C_t = C_0 e^{-\frac{t}{4}}$$

where C<sub>o</sub> is the concentration in the blood immediately after the drug was administered.

- (a) If the concentration is 3.5 mg/ml after 3 hours, what was the concentration of the drug just after it was administered?
- (b) In general, after a dose of this drug has been administered, how long does it take for the initial concentration to halve?



4

5

2

3

4

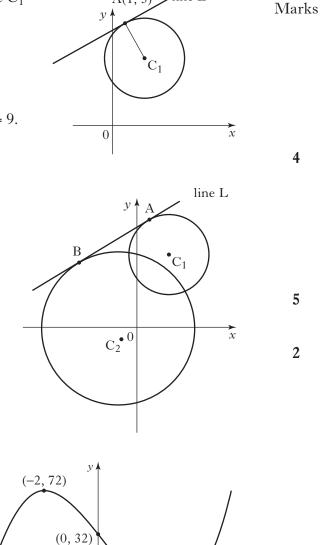
6. The line L is a tangent to the circle with centre  $C_1$  and equation

$$x^2 + y^2 - 4x - 6y + 8 = 0.$$

The point of contact A has coordinates (1,5).

(a) Show that the equation of line L is 2y - x = 9.

The circle with centre C<sub>2</sub> has equation


 $x^2 + y^2 + 2x + 2y - 18 = 0$ 

- (b) Show that line L is also a tangent to this circle.
- (c) If B is the point of contact, find the exact length of AB.
- 7. The graph shows a cubic function with equation y = f(x).

The graph has stationary points at (-2,72) and  $\left(\frac{8}{3}, -\frac{800}{27}\right)$ .

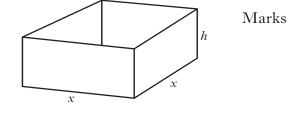
The graph intersects the axes at the points (-4,0), (1,0), (4,0) and (0,32).

Sketch the graph of y = f'(x).



0

 $(\frac{8}{3}, -\frac{800}{27})$ 


-4

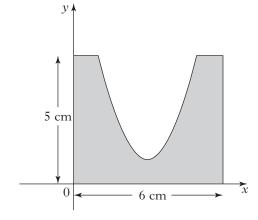
A(1, 5) / line L



8. An open box is in the shape of a cuboid and was made from a sheet of tin.

The box has a square base of side x cm and a height of h cm. The volume of the box is  $62\frac{1}{2}$ cm<sup>3</sup>




- (a) Show that the Area, A cm<sup>2</sup>, of tin required to make the box is given by A(x) =  $\frac{250}{x} + x^2$
- (b) Find the value of x for which this area is a minimum.
- **9.** The diagram shows a rectangular metal plate with dimensions 5cm × 6cm.

The plate has a parabolic section removed from it.

The equation of the parabola used to make this section is  $y = x^2 - 6x + 10$ 

The scale of the diagram is 1 unit = 1 cm

Find the shaded area, in square centimetres, of the metal plate



8

3

5

[End of question paper]