Mathematics

Higher

Practice Papers for SQA Exams Exam M Higher Paper 1 Non-calculator

You are allowed 1 hour, 30 minutes to complete this paper.

You must not use a calculator.

Full marks will only be awarded where your answer includes relevant working.

You will not receive any marks for answers derived from scale drawings.

FORMULAE LIST

Trigonometric formulae sin $(A \pm B) = sin A cos B \pm cos A sin B$ $cos (A \pm B) = cos A cos B \mp sin A sin B$ sin 2A = 2sin A cos A $cos 2A = cos^2 A - sin^2 A$ $= 2cos^2 A - 1$ $= 1 - 2sin^2 A$

Circle

The equation $x^2 + y^2 + 2nx + 2py + c = 0$ represents a circle centre (-n, -p) and radius $\sqrt{n^2 + p^2 - c}$.

The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Table of standard integrals

f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax + C$
cos ax	$\frac{1}{a}\sin ax + C$

Table of standard derivatives

f(x)	f'(x)
$\sin ax$	$a\cos ax$
cos ax	$-a \sin ax$

Scalar Product $a.b = |a| |b| \cos \theta$, where θ is the angle between a and b

or
$$\boldsymbol{a}.\boldsymbol{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

- 1. What is the limit of the sequence generated by the recurrence relation $u_{n+1} = 0.9 u_n 1$?
 - A -10B $-\frac{10}{9}$ C $\frac{20}{9}$ D 10
- 2. The line through points A (2k, 3) and B (k, 5) has gradient 4. What is the value of k?
 - A -2B $-\frac{1}{2}$ C $\frac{2}{3}$ D 8
- **3.** The following two statements are true for the polynomial f(x):
 - (1) $x^2 4$ is a factor of f(x)
 - (2) f(-1) = 0

Which of the following is a possible expression for f(x)?

- A $(x-1)^2(x-2)$
- B (x-2)(x+2)
- C $(x-1)(x-2)^2$
- D (x+1)(x-2)(x+2)
- 4. A sequence is defined by the recurrence relation $u_{n+1} = -\frac{1}{2}u_n + 1$, $u_0 = 4$; what is the value of u_2 ?
 - $A -\frac{1}{2}$ $B -\frac{3}{4}$ $C -\frac{3}{2}$ $D -\frac{5}{2}$

- 5. Solve the equation $2 \cos x \sqrt{2} = 0$ for $0 \le x \le \frac{\pi}{2}$
 - A $\frac{\pi}{6}$ B $\frac{\pi}{4}$ C $\frac{3\pi}{4}$ D $\frac{5\pi}{4}$
- 6. What is the gradient of the line perpendicular to the line with equation 4y = -3x + 2?
 - A -4
 - B -2
 - C $\frac{4}{3}$ D 7
- **7.** The points E(1, -1, -1), F(-1, -1, 0) and G(-7, -1, 3) are collinear. In what ratio does F divide EG?
 - A 2:1
 - В –1:3
 - C 1:3
 - D 3:1
- 8. What is the remainder when $2x^4 3x^3 3x + 1$ is divided by x 2?
 - A –21
 - В –9
 - C -3
 - D 3

9. (x + 4)(x - 2) can be written in the form $(x + a)^2 + b$. What is the value of b?

- A –12
- В -9
- С –8
- D 1

10. A function is defined by $f(x) = (1 - x^3)^{\frac{1}{3}}$. Find f'(x)

- A $-x^{2}(1-x^{3})^{-\frac{2}{3}}$ B $(1-x^{3})^{-\frac{2}{3}}$ C $(1-3x^{2})^{\frac{1}{3}}$ D $-4(1-x^{3})^{\frac{4}{3}}$
- **11.** The diagram shows the graph with equation y = f(x). Which of the following shows the graph with equation y = -(f(x) + 1)?

13. $f'(x) = x^2 + 1$ for a function *f*. Which statement is true?

- A f has no stationary points
- B f has exactly one stationary point
- C f has exactly two stationary points
- D f has more than two stationary points
- 14. The diagram shows the line OA where A is the point with coordinates (2,3). a° is the angle between OA and the positive direction of the *x*-axis. Which of the following gives the value of *a*?

A
$$-\tan^{-1}\frac{2}{3}$$

B $\tan^{-1}\frac{2}{3}$
C $-\tan^{-1}\frac{3}{2}$
D $\tan^{-1}\frac{3}{2}$

- **15.** Which of the following expressions gives a simplification of $\log_4 (x^2 4) 2 \log_4 (x 2)$?
 - A 0
 - B $\log_4 x(x-2)$
 - C $\log_4 \frac{x+2}{x-2}$
 - D $\log_4 (x-2)^2 (x+2)$
- **16.** Find $\int (2-3x)^{\frac{1}{3}} dx$
 - A $-\frac{1}{4}(2-3x)^{\frac{4}{3}}+c$ B $\frac{1}{3}(2-3x)^{-\frac{2}{3}}+c$ C $9(2-3x)^{-\frac{1}{3}}+c$ D (2-x)+c
- 17. Points P and Q have coordinates (-1, 2, 5) and (-3, -1, 4) respectively. If $\overrightarrow{QR} = -2\overrightarrow{PQ}$ what are the coordinates of R ?
 - A (1, 5, 6)
 - B (5, -3, -14)
 - C (-7, -7, 2)
 - D (-8, -2, -10)

18. A function f is defined by $f(x) = -2 \sin 3x$. Find f'(x).

- A $6 \sin 3x$ B $-\frac{2}{3} \cos 3x$ C $-6 \cos 3x$ D $-2 \sin 3$
- **19.** The graph shows a parabola with equation of the form y = k(x 1)(x + 2). What is the value of *k* ?
 - $A -\frac{36}{5}$ B -4 $C -\frac{1}{176}$ D 9

 $(-\frac{1}{2}, 9)$ (-2, 0) 0 (1, 0)

20. Here is an integration formula:

$$\int \frac{1}{(4x+1)^{\frac{3}{2}}} dx = -\frac{1}{2(4x+1)^{\frac{3}{2}}} + c$$

Use this formula to calculate the exact value of $\int_{0}^{2} \frac{1}{(4x+1)^{\frac{3}{2}}} dx$.
A -8
B $-\frac{26}{27}$
C $\frac{1}{6}$
D $\frac{1}{3}$

[End of section A]

SECTION B

21.	Sol	ve the equation $\sin 2x - \sqrt{3} \sin x = 0$ for $0 \le x \le 2\pi$	5
22.	(<i>a</i>)	Find the stationary points on the curve with equation $y = x^3 - 3x^2 - 24x - 28$ and justify their nature	7
	(b) '	The curve intersects the x -axis at (7,0). Sketch the curve	2

23. ABCD is a rectangle with point P lying on side AB, 1 unit from A. AD = 2 units

The dotted line PD on the diagram shows the bisector of angle APC with angle APD = angle DPC = y°

- (a) Find θ° in terms of y°
- (b) Hence find the exact value of $\sin \theta^{\circ}$
- **24.** Solve the equation $\log_{\sqrt{2}} x \log_{\sqrt{2}} 2 = 2$
- **25.** The diagram shows the cubic graph with equation $y = x^2(x 1)$. A function *f* is such that y = f'(x) is the same as the graph shown in the diagram.

If
$$f(2) = \frac{1}{3}$$
, find the formula for $f(x)$.

 $A \xrightarrow{1}_{y^{\circ}} \xrightarrow{y^{\circ}}_{y^{\circ}} \xrightarrow{\theta^{\circ}}_{C} C \qquad 1$

5

4

[End of section B] [End of question paper] Marks