1	D		A	B	С	D
2	В	1				-
3	С	2				
4	С	3			-	
5	В	4			-	
6	D	5		-		
7	A	6				-
, 8	C	7	-			
0		8			-	
9	D	9				-
10	В	10				
11	В	11		-		
12	С	12				
13	D	13				-
14	Α	14				
15	D	15				-
16	С	16				
17	С	17				
18	D	18				
10	B	19		-		
20	р А	20				
20	A					

** Please note at time of production the worked solutions to this multiple choice section were not available.

Higher Grade Paper 1 (Paper J)

Marking Scheme - Section B

	Give 1 mark for each •	Illustration(s) for awarding each mark
21(a)	 ans: proof (3 marks) •¹ finds expressions for 2 areas •² adds 4 to area of triangle and equates •³ reorganises to given form 	• $A_{rect} = x(2k-2); A_{tri} = x(x+k)$ • $x(x+k)+4 = x(2k-2)$ • $x^2 + (2-k)x + 4 = 0$
(b)	ans: $k = 6$ (3 marks) • ¹ knows condition for equal roots • ² substitutes values	• $b^2 - 4ac = 0$ [stated or implied] • $(2-k)^2 - 4 \times 1 \times 4 = 0$
(c)	• solves and discards ans: $x = 2$; 20cm ² ; 16cm ² (3 marks) • substitutes value of k to form quadratic • solves to x • finds areas	• $(k+2)(k-6) = 0; k = -2 \text{ or } 6; k = 6$ • $(k+2)(k-6) = 0; k = -2 \text{ or } 6; k = 6$ • $(x-2)^2 = 0; x = 2$ • $A_{rect} = 20cm^2; A_{tri} = 16cm^2$
22(a)	ans: $3y + x = -30$ (2 marks)•1 identifies required gradient•2 substitutes into general equation	• $m_{CB} = -\frac{1}{3}$ • $y + 11 = -\frac{1}{3}(x - 3)$ [or equivalent]
(b)	ans: $D(-3,-9)$ (3 marks)•1knows to use systems of equations•2finds value for x•3finds value for y and states coordinates	• 1 evidence • 2 $x = -3$ • 3 $y = -9; (-3, -9)$
(c) (d)	ans: C(-9,-7) (1 mark) • ¹ states coordinates of C ans: $(x + 3)^2 + (y - 1)^2 = 100$ (4 marks)	• ¹ C(-9,-7)
	 ¹ identifies diameter ² finds centre ³ finds radius or r² ⁴ subs into general equation 	• AC is diameter [\angle ADC is right-angled] • midpoint of AC is (-3,1) • $r = 10$ or $r^2 = 100$ • $(x+3)^2 + (y-1)^2 = 100$

	Give 1 mark for each •	Illustration(s) for awarding each mark
23(a)	ans: $(x-4)^2 - 15$; $p = -4$, $q = -15$ (4 marks) • ¹ finds derivative • ² starts to complete square • ³ completes • ⁴ states values of p and q ans: -15 when $r = 4$ (2 marks)	• $f(x) = x^2 - 8x + 1$ • $(x - 4)^2 \dots -15$ • $p = -4, q = -15$
(0)	• ¹ states minimum rate of change • ² states value of x	• ¹ rate of change is -15 • ² $x = 4$
24	ans: $\frac{2\pi}{3}$, 0 (5 marks) • ¹ collects terms to LHS and equates to 0 • ² factorises quadratic • ³ finds values for $\cos a$ • ⁴ finds one value for a • ⁵ finds second value for a	• $2\cos^{2} a - \cos a - 1 = 0$ • $(2\cos a + 1)(\cos a - 1) = 0$ • $\cos a = -\frac{1}{2}$ or $\cos a = 1$ • $\frac{4}{3}$ • $\frac{2\pi}{3}$ • $\frac{2\pi}{3}$ • $\frac{1}{3}$ •

Higher Grade Paper 2 (Paper J)

Marking Scheme

	Give 1 mark for each •	Illustration(s) for awarding each mark
1(a)	ans: $2y - x = -2$ (3 marks)•1 finds midpoint of BC•2 establishes gradient of AM•3 substitutes in general equation	• ¹ midpoint BC: (10,4) • ² $m_{AM} = \frac{4+2}{10+2} = \frac{1}{2}$ • ³ $y - 4 = \frac{1}{2}(x-10)$
(b)	ans: $D(4,1)$ (3 marks)•1realising $y = 1$ •2substitutes into equation•3states coordinates of D	• ¹ $y = 1$ • ² $2(1) - x = -2; x = 4$ • ³ D(4,1)
(c)	ans:proof(3 marks)•1finds gradient of BD•2knows condition for perp. lines•3makes statement re perpendicular	• $m_{BD} = -2$ • $m_1 \times m_2 = -1$ [stated or implied] • $\frac{1}{2} \times -2 = -1$ so AM and BD are perp.
2(a) (b)	ans: $P(1,-\frac{25}{2})$ (4 marks) • ¹ knows to take derivative and equate to 0 • ² takes derivative • ³ solves to find x - coordinate • ⁴ substitutes to find y - coordinate ans: Q(6,0) (3 marks) • ¹ knows to make y = 0 • ² uses synthetic division to find x • ³ states coordinates of Q	• $\frac{dy}{dx} = 0$ • $\frac{2}{3x^2} - 15x + 12 = 0$ • $\frac{3}{x} = 1$ [or 4] • $\frac{4}{y} = 1^3 - \frac{15}{2}(1) + 12(1) - 18 = -\frac{25}{2}$ • $\frac{1}{y} = 0$ • $\frac{2}{6} \begin{bmatrix} 1 & -\frac{15}{2} & 12 & -18 \\ \frac{6}{1} & -\frac{9}{2} & 18 \\ \frac{6}{1} & -\frac{3}{2} & 3 & 0 \end{bmatrix}$ • $\frac{3}{9} Q(6,0)$
		- ~(0,0)

	Give 1 mark for each •	Illustration(s) for awarding each mark
3(a)	ans:32.6 gigatonnes(3 marks)•1correct multiplier•2completes calculation•3calculation and correct rounding	• 1 0.96 • 2 0.96 ⁵ × 40 • 3 32.6 gigatonnes
(b)	ans: 31 gigatonnes (3 marks)	
	 sets up recurrence relation knows to calculate 3 figures final answer 	• $U_{n+1} = 0.96^{5}U_{n} + 3.8$ • 1^{st} year: 36.4; 2^{nd} year: 33.4795 • 3^{rd} year: 31 gigatonnes
(c)	ans: upper 20.6; lower 16.8 (3 marks)	
	 ¹ knows limit exists ² finds upper limit ³ finds lower limit 	• limit exists since $-1 < 0.96^5 < 1$ • $L = \frac{3 \cdot 8}{1 - (0 \cdot 96)^5} = 20.6$ • $20.6 - 3.8 = 16.8$
4(a)	ans: $a = -2$ (2 marks)	
	 finds expression for f(g(-2)) equates to -1 and solves for a 	• $f(g(-2)) = f(-1) = 1 + a$ • $a = -2$
(b)	ans: $x = -2, 0, 2$ (5 marks)	
	 ¹ substitutes ² simplifies ³ equates to 2 ⁴ factorises ⁵ solves for x 	• $f(f(x)) = (x^2 - 2)^2 - 2$ • $x^4 - 4x^2 + 2$ • $x^4 - 4x^2 + 2 = 2; x^4 - 4x^2 = 0$ • $x^2(x^2 - 4) = 0$ • $x = -2, 0, 2$
5(a)	ans: $x = 1$ (2 marks)	
	• ¹ realises $y = 0$; equates to 0 • ² solves for x	• ¹ $3x^2 - 6x + 3 = 0$ • ² $3(x - 1)^2 = 0; x = 1$
(b)	ans: $b = 2$ (5 marks)	
	 integrates expression substitutes values simplifies, equates to 1, rearranges uses synthetic division to solve realises one solution: discards b² - b + 1 	• $[x^{3} - 3x^{2} + 3x]_{1}^{b}$ • $(b^{3} - 3b^{2} + 3b) - (1 - 3 + 3)$ • $b^{3} - 3b^{2} + 3b - 2 = 0$ • $4^{2} 2 \begin{bmatrix} 1 & -3 & 3 & -2 \\ 2 & -2 & 2 \\ 1 & -1 & 1 & 0 \end{bmatrix}$ • $b^{5} = b = 2$

	Give 1 mark for each •	Illustration(s) for awarding each mark
6	ans: 58(4 marks) \bullet^1 knows to take logs \bullet^2 releases the power \bullet^3 makes t the subject \bullet^4 answer + rounding	• $\log 2^{-0.04t} = \log 0 \cdot 2$ • $2 - 0 \cdot 04t \log 2 = \log 0 \cdot 2$ • $t = \frac{\log 0 \cdot 2}{(-0 \cdot 04 \log 2)}$ (or equivalent) • $t = 58$
7(a)	 ans: S(6,3,-12) (3 marks) equiv.) ¹ for vector algebra ² for substituting values 	• ¹ $\mathbf{p} - \mathbf{q} = 2(\mathbf{s} - \mathbf{r}) \Rightarrow \mathbf{p} - \mathbf{q} + 2\mathbf{r} = 2\mathbf{s} \text{ (or}$ • ² $\begin{pmatrix} 6 \\ -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 10 \\ 3 \\ -2 \end{pmatrix} + \begin{pmatrix} 16 \\ 10 \\ -22 \end{pmatrix} = 2\mathbf{s}$
(b)	• ³ answer ans: proof (3 marks) $\overrightarrow{PS}.\overrightarrow{SR} = 0$) • ¹ knows scalar product = 0 (stated or implied) • ² finds both displacements • ³ calculation angle	• ³ S(6,3,-12) • ¹ statement made <u>or</u> implied (• ² $\overrightarrow{PS} = \begin{pmatrix} 0 \\ 4 \\ -8 \end{pmatrix}, \ \overrightarrow{SR} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ (or equivalent) • ³ $\overrightarrow{PS} \cdot \overrightarrow{SR} = 0 + 8 + (-8) = 0$ \therefore right
8(a)	ans: Proof (1 mark) • ¹ uses trig ratios and equates	• $\cos x = \frac{AB}{4}$, $\sin x = \frac{BC}{6}$ $4\cos x^\circ + 6\sin x^\circ = 6.72$
(b)	ans: 35° (5 marks) • ¹ recognising as $k\cos(\text{ equation})$ • ² finds k • ³ finds α • ⁴ finds first solution $x = 77 \cdot 6^{\circ}$ • ⁵ finds 2 nd solution and decides correct ans.	• $4 \cos x + 6 \sin x = k \cos(x - \alpha)$ (or equivalent) • $k^2 = 4^2 + 6^2 \therefore k = \sqrt{52}$ • $3 \tan \alpha = \frac{6}{4}$, $\alpha = 56 \cdot 3^\circ$ • $4 \cos(x - 56 \cdot 3) = \frac{6 \cdot 72}{\sqrt{52}} \therefore x - 56 \cdot 3 = 21 \cdot 3$ • $5 \text{ or } x - 56 \cdot 3 = 338 \cdot 7 \therefore x = 395^\circ = 35^\circ$ then decides 35° as < 45

	Give 1 mark for each •	Illustration(s) for awarding each mark
9(a)	ans: $m = 2400 \text{ml}$ (4 marks)	
(b)	 ¹ knows to differentiate and equate to 0 ² differentiates ³ solves for x ⁴ justifies maximum ans: 4800 feet (1 mark) ¹ knows to sub into function and evaluate 	• $H'(m) = 0$ • $4 - \frac{1}{600}m = 0$ • $m = 2400$ • 4 table of values; second derivative • $4(2400) - \frac{(2400)^2}{1200} = 4800$ feet

Total: 60 marks